@article{MatlerArrowsmithSchorretal.2021, author = {Matler, Alexander and Arrowsmith, Merle and Schorr, Fabian and Hermann, Alexander and Hofmann, Alexander and Lenczyk, Carsten and Braunschweig, Holger}, title = {Reactivity of Terminal Iron Borylenes and Bis(borylenes) with Carbodiimides: Cycloaddition, Metathesis, Insertion and C-H Activation Pathways}, series = {European Journal of Inorganic Chemistry}, volume = {2021}, journal = {European Journal of Inorganic Chemistry}, number = {45}, doi = {10.1002/ejic.202100629}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257397}, pages = {4619-4631}, year = {2021}, abstract = {The reactions of carbodiimides with the iron arylborylene complex [Fe=BDur(CO)\(_{3}\)(PMe\(_{3}\))] (Dur=2,3,5,6-Me\(_{4}\)C\(_{6}\)H) and the iron bis(borylene) complex [Fe{=BDur}{=BN(SiMe\(_{3}\))\(_{2}\)}(CO)\(_{3}\)] yield a wide variety of temperature-dependent products, including known FeBNC and novel FeBNB metallacycles, complexes of N-heterocyclic boracarbene and spiro-boracarbene ligands and a unique 1,3,2,4-diazadiborolyl pianostool complex, characterized by NMR spectroscopy and X-ray crystallography. The product distributions can be rationalized by considering sequences of cycloaddition, metathesis, insertion, and C-H activation pathways mainly governed by sterics.}, language = {en} } @article{MarkensteinAppeltMenzelMetzgeretal.2014, author = {Markenstein, Lisa and Appelt-Menzel, Antje and Metzger, Marco and Wenz, Gerhard}, title = {Conjugates of methylated cyclodextrin derivatives and hydroxyethyl starch (HES): Synthesis, cytotoxicity and inclusion of anaesthetic actives}, series = {Beilstein Journal of Organic Chemistry}, volume = {10}, journal = {Beilstein Journal of Organic Chemistry}, issn = {1860-5397}, doi = {10.3762/bjoc.10.325}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114280}, pages = {3087 - 3096}, year = {2014}, abstract = {The mono-6-deoxy-6-azides of 2,6-di-O-methyl-beta-cyclodextrin (DIMEB) and randomly methylated-beta-cyclodextrin (RAMEB) were conjugated to propargylated hydroxyethyl starch (HES) by Cu+-catalysed [2 + 3] cycloaddition. The resulting water soluble polymers showed lower critical solution temperatures (LCST) at 52.5 degrees C (DIMEB-HES) and 84.5 degrees C (RAMEB-HES), respectively. LCST phase separations could be completely avoided by the introduction of a small amount of carboxylate groups at the HES backbone. The methylated CDs conjugated to the HES backbone exhibited significantly lower cytotoxicities than the corresponding monomeric CD derivatives. Since the binding potentials of these CD conjugates were very high, they are promising candidates for new oral dosage forms of anaesthetic actives.}, language = {en} }