@phdthesis{Platt2012, author = {Platt, Christian}, title = {A Common Thread in Unconventional Superconductivity: The Functional Renormalization Group in Multi-Band Systems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78824}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die supraleitenden Eigenschaften von komplexen Materialsystemen, wie den erst k{\"u}rzlich entdeckten Eisen-Pniktiden oder den Strontium-Ruthenaten, sind oftmals durch das Zusammenspiel vieler elektronischer Orbitale bestimmt. Um die Supraleitung in derartigen Systemen besser zu verstehen, entwickeln wir in dieser Arbeit eine Multi-Orbital-Implementierung der funktionalen Renormierungsgruppe und untersuchen die Elektronenpaarung in verschiedenen charakteristischen Materialverbindungen. In den Eisen-Pniktiden finden wir hierbei mehrere Spinfluktuationskan{\"a}le, die eine Elektronenpaarung hervorrufen, sofern die Paarwellenfunktion einen Vorzeichenwechsel zwischen den verschiedenen genesteten Bereichen der Fermifl{\"a}che aufweist. Abh{\"a}ngig von den spezifischen Materialeigenschaften, wie der Dotierung oder der Position des Pniktogenatoms, f{\"u}hren diese Spinfluktuationen dann zu \$s_{\pm}\$-wellenartiger Paarung mit durchg{\"a}ngiger Energiel{\"u}cke oder mit Knoten auf der Fermifl{\"a}che. In manchen F{\"a}llen wird zudem auch \$d\$-wellenartige Paarung induziert, die in der N{\"a}he des {\"U}bergangs zur \$s_{\pm}\$-Symmetrie einen gemischten \$(s+id)\$-Zustand mit gebrochener Zeitinversionssymmetrie aufweist. Diese neuartige Phase zeigt faszinierende Eigenschaften, wie zum Beispiel das spontane Entstehen von Suprastr{\"o}men am Probenrand und um nichtmagnetische St{\"o}rstellen. Auf Grund der durchg{\"a}ngigen Energiel{\"u}cke ist dieser \$(s+id)\$-Zustand energetisch beg{\"u}nstigt. Im Folgenden untersuchen wir zudem auch die elektronischen Instabilit{\"a}ten eines weiteren außergew{\"o}hnlichen Materials -- dotiertes Graphen. Diese rein zweidimensionale Kohlenstoffverbindung ist schon seit mehreren Jahren im Fokus der Festk{\"o}rperforschung und wurde mittlerweile auch durch neuartige experimentelle Verfahren dotiert, ohne die zugrundeliegende hexagonale Gittersturktur merklich zu st{\"o}ren. Eine theoretische Beschreibung dieses Systems erfordert die Ber{\"u}cksichtigung zweier nicht-equivalenter Gitterpl{\"a}tze, was wiederum effektiv als Zwei-Orbital-System aufgefasst werden kann. Durch die besondere Symmetrie der hexagonalen Gitterstruktur sind beide \$d\$-wellenartigen Paarungskan{\"a}le entartet und ahnlich der \$(s+id)\$-Paarung in den Pniktiden finden wir hier eine chirale \$(d+id)\$-Paarung in einem weiten Dotierungsbereich um van-Hove F{\"u}llung. Des Weiteren identifizieren wir Spin-Triplet-Paarung und eine exotische Form der Spindichtewelle, welche beide durch leichte Ver{\"a}nderung der langreichweitigen H{\"u}pfamplituden und Wechselwirkungensparameter realisiert werden k{\"o}nnen. Als drittes Beispiel betrachten wir die Supraleitung in dem Strontium-Ruthenat Sr\$_2\$RuO\$_4\$. Die Besonderheit dieser Materialverbindung liegt in der m{\"o}glichen Realisierung einer chiralen Spin-Triplet Paarung, die wiederum faszinierende Eigenschaften wie die Existenz von halbganzzahligen Flussvortizes mit nicht-Abelscher Vertauschungsstatistik aufweisen w{\"u}rde. Mittels eines mikroskopischen Drei-Orbital-Modells und der Ber{\"u}cksichtigung von Spin-Bahn-Kopplung finden wir hierbei, dass moderate ferromagnetische Spinfluktuationen immer noch ausreichen, um diesen speziellen Paarungszustand anzutreiben. Die berechnete Energiel{\"u}cke zeigt im Weiteren sehr starke Anisotropien auf dem \$d_{xy}\$-Orbital-dominierten Bereich der Fermifl{\"a}che und verschwindet nahezu vollst{\"a}ndig auf den anderen beiden Fermifl{\"a}chen.}, subject = {Supraleitung}, language = {en} } @phdthesis{Schelter2012, author = {Schelter, J{\"o}rg}, title = {The Aharonov-Bohm effect and resonant scattering in graphene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74662}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {In this thesis, the electronic transport properties of mesoscopic condensed matter systems based on graphene are investigated by means of numerical as well as analytical methods. In particular, it is analyzed how the concepts of quantum interference and disorder, which are essential to mesoscopic devices in general, are affected by the unique electronic and transport properties of the graphene material system. We consider the famous Aharonov-Bohm effect in ring-shaped transport geometries, and, besides providing an overview over the recent developments on the subject, we study the signatures of fundamental phenomena such as Klein tunneling and specular Andreev reflection, which are specific to graphene, in the magnetoconductance oscillations. To this end, we introduce and utilize a variant of the well-known recursive Green's function technique, which is an efficient numerical method for the calculation of transport observables in effectively non-interacting open quantum systems in the framework of a tight binding model. This technique is also applied to study the effects of a specific kind of disorder, namely short-range resonant scatterers, such as strongly bound adatoms or molecules, that can be modeled as vacancies in the graphene lattice. This numerical analysis of the conductance in the presence of resonant scatterers in graphene leads to a non-trivial classification of impurity sites in the graphene lattice and is further substantiated by an independent analytical treatment in the framework of the Dirac equation. The present thesis further contains a formal introduction to the topic of non-equilibrium quantum transport as appropriate for the development of the numerical technique mentioned above, a general introduction to the physics of graphene with a focus on the particular phenomena investigated in this work, and a conclusion where the obtained results are summarized and open questions as well as potential future developments are highlighted.}, subject = {Graphen}, language = {en} }