@phdthesis{Kastner2020, author = {Kastner, Matthias J.}, title = {Spectroscopic investigation of molecular adsorption and desorption from individual single-wall carbon nanotubes}, doi = {10.25972/OPUS-21175}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211755}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Nanoelectronics is an essential technology for down-scaling beyond the limit of silicon-based electronics. Single-Wall Carbon Nanotubes (SWNT) are semiconducting components that exhibit a large variety of properties that make them usable for sensing, telecommunication, or computational tasks. Due to their high surface to volume ratio, carbon nanotubes are strongly affected by molecular adsorptions, and almost all properties depend on surface adsorption. SWNT with smaller diameters (0.7-0.9nm) show a stronger sensitivity to surface effects. An optimized synthesis route was developed to produce these nanotubes directly. They were produced with a clean surface, high quality, and large lengths of 2 μ m. The results complement previous studies on larger diameters (0.9-1.4nm). They allow performing statistically significant assumptions for a perfect nanotube, which is selected from a subset of nanotubes with good emission intensity, and high mechanical durability. The adsorption of molecules on the surface of carbon nanotubes influences the motion and binding strength of chargeseparated states in this system. To gain insight into the adsorption processes on the surface with a minimum of concurrent overlapping effects, a microscopic setup, and a measurement technique were developed. The system was estimated to exhibit excellent properties like long exciton diffusion lengths (>350nm), and big exciton sizes (8.5(5)nm), which was substantiated by a simulation. We studied the adsorption processes at the surface of Single-Wall Carbon Nanotubes for molecules in the gas phase, solvent molecules, and surfactant molecules. The experiments were all carried out on suspended individualized carbon nanotubes on a silicon wafer substrate. The experiments in the gas-phase showed that the excitonic emission energy and intensity experiences a rapid blue shift during observation. This shift was associated with the spontaneous desorption of large clusters of gaseous molecules caused by laser heat up. The measurement of this desorption was essential for creating a reference to an initially clean surface and allows us to perform a comparison with previous measurements on this topic. Furthermore, the adsorption of hydrogen on the nanotube surface at high temperatures was investigated. It was found that a new emission mode arises slightly red-shifted to the excitonic emission in these systems. The new signal is almost equally strong as the main excitonic peak and was associated with the brightening of dark excitons at sp3-defects through a K-phonon assisted pathway. The finding is useful for the direct synthesis of spintronic devices as these systems are known to act as single-photon emitters. The suspended nanotubes were further studied to estimate the effect of solvent adsorption on the excitonic states during nanotube dispersion for each nanotube individually. A significant quantum yield loss is observable for hexane and acetonitrile, while the emission intensity was found to be the strongest in toluene. The reference to a clean surface allowed us to estimate the exact influence of the dielectric environment of adsorbing solvents on the excitonic emission energy. Solvent adsorption was found to lead to an energy shift that is almost twice as high as suggested in previous studies. The amount of this energy shift, however, was comparably similar for all solvents, which suggests that the influence of the distinct dielectric constant in the outer environment less significantly influences the energy shift than previously thought. An interesting phenomenon was found when using acetonitrile as a solvent, which leads to greatly enhanced emission properties. The emission is more than twice as high as in the same air-suspended nanotubes, which suggests a process that depends on the laser intensity. In this study, it was reasonably explained how an energy down-conversion is possible through the coupling of the excitonic states with solvent vibrations. The strength of this coupling, however, also suggests adsorptions to the inside of the tubular nanotube structure leading to a coupled vibration of linear acetonitrile molecules that are adsorbed to the inner surface. The findings are important for the field of nanofluidics and provide an excellent system for efficient energy down-conversion in the transmission window of biological tissue. Having separated the pure effect of solvent adsorption allowed us to study the undisturbed molecular adsorption of polymers in these systems. The addition of polyfluorene polymer leads to a slow but stepwise intensity increase. The intensity increase is overlapping with a concurrent process that leads to an intensity decrease. Unfortunately, observing the stepwise process has a low spacial resolution of only 100-250nm, which is in the range of the exciton diffusion length in these systems and hinders detailed analysis. The two competing and overlapping processes processes are considered to originate from slow π-stacking and fast side-chain binding. Insights into this process are essential for selecting suitably formed polymers. However, the findings also emphasize the importance of solvent selection during nanotube dispersion since solvent effects were proven to be far more critical on the quantum yield in these systems. These measurements can shed light on the ongoing debate on polymers adsorption during nanotube individualization and allow us to direct the discussion more towards the selection of suitable solvents. This work provides fundamental insights into the adsorption of various molecules on the surface of individually observed suspended Single-Wall Carbon Nanotubes. It allows observing the adsorption of individual molecules below the optical limit in the solid, liquid, and gas phases. Nanotubes are able to act as sensing material for detecting changes in their direct surrounding. These fundamental findings are also crucial for increasing the quantum yield of solvent-dispersed nanotubes. They can provide better light-harvesting systems for microscopy in biological tissue and set the base for a more efficient telecommunication infrastructure with nano-scale spintronics devices and lasing components. The newly discovered solvent alignment in the nanotube surrounding can potentially also be used for supercapacitors that are needed for caching the calculation results in computational devices that use polymer wrapped nanotubes as transistors. Although fundamental, these studies develop a strategy to enlighten this room that is barely only visible at the bottom of the nano-scale.}, subject = {Kohlenstoff-Nanor{\"o}hre}, language = {en} } @phdthesis{Schneider2020, author = {Schneider, Michael}, title = {Entwicklung magnetischer Kompositpartikel zur Fluidbehandlung und Wertstoffr{\"u}ckgewinnung}, doi = {10.25972/OPUS-19968}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199681}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In der vorliegenden Arbeit wurden magnetische Kompositpartikel f{\"u}r den Einsatz in Fl{\"u}ssigkeiten entwickelt. Der Aufbau der Partikel erfolgte dabei modular, sodass eine Anpassung an verschiedene Einsatzm{\"o}glichkeiten realisierbar sein sollte. Die gezeigten Arbeiten bauen auf Partikeln bestehend aus magnetischen Nanopartikeln eingebettet in eine Silica-Matrix als Tr{\"a}gerpartikel auf, welche im Rahmen der vorliegenden Arbeit weiterentwickelt wurden. Der Schwerpunkt lag dabei auf der Entwicklung eines Adsorbermaterials f{\"u}r Phosphat als Funktionalisierung f{\"u}r die magnetischen Tr{\"a}gerpartikel, welches f{\"u}r den Einsatz der Entfernung von Phosphat aus kommunalem Abwasser geeignet sein sollte, sowie dessen Einsatz im Labor- und Technikumsmaßstab. Besonderes Augenmerk lag auf der umfassenden Charakterisierung des entwickelten Matrerials sowie der Aufkl{\"a}rung des Wirkmechanismus bei der Phosphatadsorption. Ein weiterer Teil der Arbeit besch{\"a}ftigte sich mit der Steigerung der Magnetisierung des magnetischen Anteils der Partikel f{\"u}r eine verbesserte magnetische Abtrennung. Um die vielseitige Einsetzbarkeit der magnetischen Tr{\"a}gerpartikel zu demonstrieren, wurden abschließend weitere Funktionalisierungen f{\"u}r diese entwickelt und deren Anwendbarkeit grundlegend getestet. So wurde zum einen eine Modifizierung mit Komplexverbindungen und Metal-Organic Frameworks (MOF) realisiert mit dem m{\"o}glichen Einsatzgebiet der Wasserdetektion in organischen L{\"o}semitteln. Zum anderen wurde eine Beschichtung mit Kohlenstoff durchgef{\"u}hrt und die Entfernung von organischen Farbstoffmolek{\"u}len aus Wasser untersucht.}, subject = {Magnetisches Trennverfahren}, language = {de} } @phdthesis{Balzer2018, author = {Balzer, Christian}, title = {Adsorption-Induced Deformation of Nanoporous Materials — in-situ Dilatometry and Modeling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157145}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The goal of this work is to improve the understanding of adsorption-induced deformation in nanoporous (and in particular microporous) materials in order to explore its potential for material characterization and provide guidelines for related technical applications such as adsorption-driven actuation. For this purpose this work combines in-situ dilatometry measurements with in-depth modeling of the obtained adsorption-induced strains. A major advantage with respect to previous studies is the combination of the dilatometric setup and a commercial sorption instrument resulting in high quality adsorption and strain isotherms. The considered model materials are (activated and thermally annealed) carbon xerogels, a sintered silica aerogel, a sintered hierarchical structured porous silica and binderless zeolites of type LTA and FAU; this selection covers micro-, meso- and macroporous as well as ordered and disordered model materials. All sample materials were characterized by scanning electron microscopy, gas adsorption and sound velocity measurements. In-situ dilatometry measurements on mesoporous model materials were performed for the adsorption of N2 at 77 K, while microporous model materials were also investigated for CO2 adsorption at 273 K, Ar adsorption at 77 K and H2O adsorption at 298 K. Within this work the available in-situ dilatometry setup was revised to improve resolution and reproducibility of measurements of small strains at low relative pressures, which are of particular relevance for microporous materials. The obtained experimental adsorption and strain isotherms of the hierarchical structured porous silica and a micro-macroporous carbon xerogel were quantitatively analyzed based on the adsorption stress model; this approach, originally proposed by Ravikovitch and Neimark, was extended for anisotropic pore geometries within this work. While the adsorption in silica mesopores could be well described by the classical and analytical theory of Derjaguin, Broekhoff and de Boer, the adsorption in carbon micropores required for comprehensive nonlocal density functional theory calculations. To connect adsorption-induced stresses and strains, furthermore mechanical models for the respective model materials were derived. The resulting theoretical framework of adsorption, adsorption stress and mechanical model was applied to the experimental data yielding structural and mechanical information about the model materials investigated, i.e., pore size or pore size distribution, respectively, and mechanical moduli of the porous matrix and the nonporous solid skeleton. The derived structural and mechanical properties of the model materials were found to be consistent with independent measurements and/or literature values. Noteworthy, the proposed extension of the adsorption stress model proved to be crucial for the correct description of the experimental data. Furthermore, it could be shown that the adsorption-induced deformation of disordered mesoporous aero-/xerogel structures follows qualitatively the same mechanisms obtained for the ordered hierarchical structured porous silica. However, respective quantitative modeling proved to be challenging due to the ill-shaped pore geometry of aero-/xerogels; good agreement between model and experiment could only be achieved for the filled pore regime of the adsorption isotherm and the relative pressure range of monolayer formation. In the intermediate regime of multilayer formation a more complex model than the one proposed here is required to correctly describe stress related to the curved adsorbate-adsorptive interface. Notably, for micro-mesoporous carbon xerogels it could be shown that micro- and mesopore related strain mechanisms superimpose one another. The strain isotherms of the zeolites were only qualitatively evaluated. The result for the FAU type zeolite is in good agreement with other experiments reported in literature and the theoretical understanding derived from the adsorption stress model. On the contrary, the strain isotherm of the LTA type zeolite is rather exceptional as it shows monotonic expansion over the whole relative pressure range. Qualitatively this type of strain isotherm can also be explained by the adsorption stress model, but a respective quantitative analysis is beyond the scope of this work. In summary, the analysis of the model materials' adsorption-induced strains proved to be a suitable tool to obtain information on their structural and mechanical properties including the stiffness of the nonporous solid skeleton. Investigations on the carbon xerogels modified by activation and thermal annealing revealed that adsorption-induced deformation is particularly suited to analyze even small changes of carbon micropore structures.}, subject = {Nanopor{\"o}ser Stoff}, language = {en} } @phdthesis{Brunecker2015, author = {Brunecker, Frank}, title = {Kohlenstoffnanorohr-Komplexe - Adsorption und Desorption von (Bio-)Polymeren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113485}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Zur Charakterisierung der Wechselwirkungen zwischen organischen Dispergiermitteln und nanoskaligen Oberfl{\"a}chen stellen Komplexe aus Kohlenstoffnanor{\"o}hren und (Bio-)Polymeren aufgrund der großen Oberfl{\"a}che der Nanor{\"o}hren und der kommerziellen Verf{\"u}gbarkeit fluoreszenzmarkierter DNA-Oligomere unterschiedlicher L{\"a}nge sowie intrinsisch fluoreszierender Polymere ein vielversprechendes Modellsystem dar. Im Rahmen der vorliegenden Dissertation wurden verschiedene Methoden evaluiert, um die Stabilit{\"a}t derartiger Komplexe zu untersuchen und dadurch R{\"u}ckschl{\"u}sse auf das Adsorptionsverhalten der (Bio-)Polymere zu ziehen. Dabei konnte gezeigt werden, dass das publizierte helikale Adsorptionsmodell der DNA auf Kohlenstoffnanor{\"o}hren die Resultate der durchgef{\"u}hrten Experimente nur unzureichend beschreiben kann und stattdessen andere Adsorptionskonformationen in Erw{\"a}gung gezogen werden m{\"u}ssen.}, subject = {Kohlenstoff-Nanor{\"o}hre}, language = {de} } @phdthesis{Beer2011, author = {Beer, Meike Vanessa}, title = {Correlation of ligand density with cell behavior on bioactive hydrogel layers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74454}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Diese Arbeit besch{\"a}ftigte sich mit der Quantifizierung von Zelladh{\"a}sion vermittelnden Liganden in und auf d{\"u}nnen Hydrogelschichten, die zur Oberfl{\"a}chenmodifizierung auf Biomaterialien aufgebracht wurden. Das bereits etablierte und gut charakterisierte inerte NCO-sP(EO-stat-PO) Hydrogelsystem, das eine einfache und reproduzierbare Bioaktivierung mit Peptiden erlaubt, wurde als Basis f{\"u}r diese Arbeit verwendet. Diese Hydrogele k{\"o}nnen auf zwei Weisen funktionalisiert werden. Liganden k{\"o}nnen entweder mit der Prepolymerl{\"o}sung vor der Beschichtung gemischt (Einmischmethode) oder frische Hydrogelschichten mit einer Ligandenl{\"o}sung inkubiert werden (Inkubationsmethode). Der erste Teil dieser in drei Hauptteile unterteilten Arbeit, besch{\"a}ftigte sich mit der Konzentrationsbestimmung der Liganden in der gesamten Tiefe der Hydrogelschicht, w{\"a}hrend sich der zweite Teil auf die oberfl{\"a}chensensitive Quantifizierung von Zelladh{\"a}sion vermittelnden Molek{\"u}len an der biologischen Grenzfl{\"a}che konzentrierte. Die Ergebnisse wurden mit Zelladh{\"a}sionskinetiken verglichen. Der dritte Teil dieser Arbeit besch{\"a}ftigte sich mit der biochemischen als auch strukturellen Nachahmung der komplexen Extrazellul{\"a}rmatrix (ECM). Das ECM Protein Fibronektin (FN) wurde {\"u}ber Zucker-Lektin Anbindung pr{\"a}sentiert und Zellverhalten auf diesen biomimetischen Oberfl{\"a}chen untersucht. Ebenfalls wurde Zellverhalten in einer dreidimensionalen Faserumgebung mit identischer Oberfl{\"a}chenchemie wie in den beiden ersten Teilen dieser Arbeit untersucht und mit der Peptidkonzentration korreliert. Insgesamt, war die Hauptfragestellung in dieser Arbeit 'Wie viel?', d.h. einerseits die Ermittlung der maximalen, als auch der f{\"u}r Zelladh{\"a}sion optimalen Ligandendichte. Im ersten praktischen Teil der vorliegenden Arbeit (Klassische Quantifizierung) wurden Liganden in der gesamten Hydrogelschicht, als auch speziell in oberen Bereichen der Schichten quantifiziert. Die Untersuchung der Hydrogelschichten in Wellplatten und auf Glas funktionalisiert mit GRGDS und 125I-YRGDS erfolgte in Kapitel 3 mittels Radioaktivmessung. Wurden Hydrogelschichten mittels Inkubationsmethode funktionalisiert, konnte eine S{\"a}ttigung mit Liganden bei etwa 600 µg/mL ermittelt werden. Mittels Einmischmethode funktionalisierte Hydrogele erreichten keine maximale Ligandenkonzentration in den Schichten, mit dem Verh{\"a}ltnis 2/1 als maximales verwendetes Verh{\"a}ltnis. H{\"o}here Liganden zu Prepolymer Verh{\"a}ltnisse als 2/1 wurden jedoch nicht verwendet, um eine ausreichende Vernetzung der Hydrogele nicht zu gef{\"a}hrden. Zur Detektion mittels R{\"o}ntgenphotoelektronenspektroskopie (XPS) und Flugzeit-Sekund{\"a}rionen-Massen-spektrometrie (TOF-SIMS) (Kapitel 4) wurden eine fluorierte Aminos{\"a}ure und ein iodiertes Peptid mit den Prepolymeren in molaren Verh{\"a}ltnissen von 1/2, 1/1 und 2/1 gemischt. Beide Methoden ermittelten eine maximale Ligandenkonzentration bei Verh{\"a}ltnissen von 1/1. Zus{\"a}tzliche Liganden (2/1) f{\"u}hrten zu keiner vermehrten Anbindung. Wesentlich im Zusammenhang mit der Ligandenquantifizierung auf Biomaterialien ist, diese an der Oberfl{\"a}che, die f{\"u}r Zellen zug{\"a}nglich ist, durchzuf{\"u}hren. Im zweiten Teil dieser Arbeit (Oberfl{\"a}chensensitive Quantifizierung) kamen daher Methoden zum Einsatz, die Liganden ausschließlich auf der Oberfl{\"a}che quantifizierten. Zur Detektion mit Oberfl{\"a}chenplasmon-resonanz (SPR) und akustischer Oberfl{\"a}chenwellentechnologie (SAW) in Kapitel 5 musste die Standardbeschichtung der Hydrogele von Glas und Silikon auf Cystamin funktionalisierte Goldoberfl{\"a}chen {\"u}bertragen werden. Mittels Ellipsometrie und Rasterkraftmikroskopie (AFM) konnte nur eine d{\"u}nne und inhomogene Hydrogelbeschichtung nachgewiesen werden. Dennoch zeigten SPR und SAW die Unterbindung von Serum und Streptavidin (SA) Adsorption auf nicht funktionalisierten Schichten, jedoch eine spezifische und konzentrationsabh{\"a}ngige SA Bindung auf Hydrogelschichten, die mit Biocytin und GRGDSK-biotin funktionalisiert wurden. Die Ligandenquantifizierung mittels Enzymgekoppeltem Immunadsorptionstest (ELISA) und Enzymgekoppelten Lektinadsorptionstest (ELLA) (Kapitel 6) wurde auf Hydrogelschichten in Wellplatten und auf Glas angewendet, die mit verschiedenen Liganden mittels Inkubation und Einmischung funktionalisiert wurden. Das Modellmolek{\"u}l Biocytin, das biotinylierte Peptid GRGDSK-biotin, das ECM Protein Fibronektin (FN), als auch die Modellzucker N-Acetyl-glukosamin (GlcNAc) und N-Acetyllaktosamin (LacNAc) konnten spezifisch in verschiedenen Konzentrationen nachgewiesen werden. Beispielhaft seien hier Schichten auf Glas genannt, die mittels Einmischmethode mit GRGDSK-biotin funktionalisiert wurden, da diese zum Vergleich in Kapitel 8 herangezogen wurden. Auf diesen Oberfl{\"a}chen wurde eine maximale Peptidkonzentration auf der Oberfl{\"a}che bei einem Peptid zu Prepolymer Verh{\"a}ltnis von 1/5 ermittelt. Neben diesen verschiedenen Quantifzierungsmethoden ist die in vitro Analyse mit Zellen nicht zu vernachl{\"a}ssigen (Kapitel 7). Hierzu wurden Hydrogele auf Glas aufgebracht und mit GRGDS mittels Einmischmethode funktionalisiert. Durch Z{\"a}hlen adh{\"a}renter prim{\"a}rer humaner dermaler Fibroblasten (HDF) auf Mikroskopbildern wurde eine maximale Zelladh{\"a}sion bei dem Peptid zu Prepolymer Verh{\"a}ltnis von 1/5 festgestellt. Hingegen wurde ein Verh{\"a}ltnis von 1/2 f{\"u}r optimale Zelladh{\"a}sion ermittelt, wenn Zellen zur Quantifizierung von den Hydrogelen abgel{\"o}st und im CASY® Zellz{\"a}hler quantifiziert wurden. Zus{\"a}tzlich wurde die Zellvitalit{\"a}t durch Messung intrazellul{\"a}rer Enzymaktivit{\"a}ten gemessen, jedoch konnte kein Zusammenhang zwischen Zellvitalit{\"a}t und GRGDS Konzentration hergestellt werden. Adh{\"a}rente HDFs waren in allen F{\"a}llen vital, unabh{\"a}ngig von der Ligandenkonzentration auf der Oberfl{\"a}che. Auch die Mausfibroblasten Zelllinie NIH L929 wurde auf Hydrogelen mit verschiedenen GRGDS zu Prepolymer Verh{\"a}ltnissen durch Z{\"a}hlen adh{\"a}renter Zellen auf Mikroskopbildern untersucht. Diese im Verh{\"a}ltnis zu HDFs wesentlich kleineren Mauszellen ben{\"o}tigten h{\"o}here GRGDS Konzentrationen (2/1) f{\"u}r maximale Zelladh{\"a}sion. Nach der Ligandenquantifizierung in Kapitel 3 bis 7, wurden diese Ergebnisse in Kapitel 8 miteinander verglichen. Hierzu wurden Messungen auf Hydrogelschichten verwendet, die mittels Einmischmethode funktionalisiert wurden. W{\"a}hrend die Quantifizierung mittels Radioaktivmessung in der gesamten Tiefe der Hydrogelschichten keine maximale Ligandenkonzentration ermitteln konnte, war in den oberen Bereichen der Schicht ein Maximum an Liganden bei 1/1 festzustellen (XPS, TOF-SIMS). SPR und SAW wurden zum Vergleich nicht herangezogen, da die Beschichtung auf Gold erst optimiert werden muss. Oberfl{\"a}chensensitive Quantifizierung mittels ELISA und Zelladh{\"a}sion, die lediglich die sterisch zug{\"a}nglichen Liganden auf einer Oberfl{\"a}che nachweisen, ergaben {\"u}bereinstimmend eine optimale Ligandenkonzentration f{\"u}r SA Bindung und Zelladh{\"a}sion bei einem Peptid zu Prepolymer Verh{\"a}ltnis von 1/5. Dies unterstreicht, wie wichtig der Vergleich der Methoden, als auch die Verwendung von oberfl{\"a}chensensitiven Methoden ist. Der dritten Teil dieser Arbeit besch{\"a}ftigte sich mit der biochemischen und strukturellen Nachahmung der komplexen extrazellul{\"a}ren Umgebung (Advanced ECM engineering), ein wichtiger Aspekt in der Biomaterialforschung, da zum gr{\"o}ßten Teil zwei-dimensionale Biomaterialien zum Einsatz kommen, die direkt mit Liganden kovalent funktionalisiert werden. Die ECM ist jedoch um ein Vielfaches komplexer und die bestm{\"o}gliche Nachahmung ist Voraussetzung f{\"u}r eine bessere Akzeptanz durch Zellen und Gewebe. In Kapitel 9 wurde eine M{\"o}glichkeit aufgezeigt, das ECM Protein FN nicht-kovalent {\"u}ber Zucker-Lektinbindungen zu immobilisieren. Ein Schichtaufbau von Hydrogel, dem darauf durch Mikrokontakt-druckverfahren (MCP) kovalent gebundenen Zucker Poly-N-Acetyllaktosamin (polyLacNAc) und den darauf nicht-kovalent gebundenen Galektin His6CGL2 und FN, konnte mit Fluoreszenzf{\"a}rbung elegant nachgewiesen werden. Optimale Konzentrationen f{\"u}r den Schichtaufbau wurden mittels ELLA/ELISA auf Hydrogelschichten ermittelt, die durch Inkubation mit dem Zucker funktionalisiert wurden. Nur der komplette Schichtaufbau konnte zufriedenstellende HDF Adh{\"a}sion vermitteln und im Vergleich zu Zellkulturpolystyrol (TCPS) Oberfl{\"a}chen konnten HDFs auf dem biomimetischen Schichtaufbau schneller adh{\"a}rieren und spreiten. Zudem wurde die Umorganisierung von auf Glas adsorbiertem FN, auf NCO-sP(EO-stat-PO) kovalent gebundenem FN und biomimetisch {\"u}ber polyLAcNAc-His6CGL2 gebundenem FN durch HDFs verglichen. Nur auf den biomimetischen Oberfl{\"a}chen schien eine Umorganisation durch die Zellen m{\"o}glich, wie sie auch in der ECM zu finden ist. Diese biomimetische und flexible Pr{\"a}sentation eines Proteins erwies sich als vielversprechende M{\"o}glichkeit eine biomimetischere Oberfl{\"a}che f{\"u}r Zellen zu schaffen, die eine optimale Biokompatibilit{\"a}t erm{\"o}glichen k{\"o}nnte. Auch die strukturelle Nachahmung der ECM ist eine vielversprechende Strategie zum Nachbau der ECM. In Kapitel 10 wurde ein Einschrittverfahren zur Herstellung synthetischer, bioaktiver und degradierbarer Faserkonstrukte durch Elektrospinnen zur Nachahmung der ECM pr{\"a}sentiert. In diesem System wurden durch Zugabe von NCO-sP(EO-stat-PO) als reaktives Additiv zu Poly(D,L-laktid-co-Glycolid) (PLGA) Fasern hergestellt, die mit einer ultrad{\"u}nnen, inerten Hydrogelschicht versehen waren. Es konnte gezeigt werden, dass durch die Verwendung von NCO-sP(EO-stat-PO) als Additiv die Adsorption von Rinderserumalbumin (BSA) im Vergleich zu PLGA um 99,2\% reduziert, die Adh{\"a}sion von HDFs verhindert und die Adh{\"a}sion von humanen mesenchymalen Stammzellen (MSC) minimiert werden konnten. Spezifische Bioaktivierung wurde durch Zugabe von Peptidsequenzen zur Spinl{\"o}sung erreicht, welche kovalent in die Hydrogelschicht eingebunden werden konnten und kontrollierte Zell-Faser Interaktionen erm{\"o}glichten, Um die spezifische Zelladh{\"a}sion an solchen inerten Fasern zu erzielen, wurde GRGDS kovalent auf der Faseroberfl{\"a}che gebunden. Dies erfolgte durch Zugabe des Peptids zur Polymerl{\"o}sung vor dem Elektrospinnen. Als Negativkontrolle wurde die Peptidsequenz GRGES an die Faseroberfl{\"a}che gebunden, welche durch Zellen nicht erkannt wird. W{\"a}hrend die Verhinderung unspezifischer Proteinadsorption f{\"u}r die Peptidmodifizierten Fasern erhalten blieb, konnten HDFs lediglich auf den mit GRGDS Peptid modifizierten Fasern adh{\"a}rieren, proliferieren und nach zwei Wochen eine konfluente Zellschicht aus vitalen Zellen bilden. Zus{\"a}tzlich konnten MSCs auf GRGDS funktionalisierten Fasern adh{\"a}rieren. Liganden konnten auf Fasern quantifiziert werden, indem die ELISA Technik aus Kapitel 6 auf Faseroberfl{\"a}chen transferiert wurde. Um das Potential der biochemischen und strukturellen Nachbildung der ECM aufzuzeigen, wurden beide Ans{\"a}tze miteinander kombiniert. Die Immobilisierung von polyLacNAc auf die Hydrogelfasern durch Inkubation und der Schichtaufbau mit His6CGL2 und FN resultierte in HDF Adh{\"a}sion.}, subject = {Hydrogel}, language = {en} } @phdthesis{Kroeger2010, author = {Kr{\"o}ger, Ingo}, title = {Adsorption von Phthalocyaninen auf Edelmetalloberfl{\"a}chen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57225}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In dieser Arbeit wurden methoden{\"u}bergreifend die Adsorbatsysteme CuPc/Ag(111), CuPc/Au(111), CuPc/Cu(111), H2Pc/Ag(111) und TiOPc/Ag(111) untersucht und detailliert charakterisiert. Der Schwerpunkt der Experimente lag in der Bestimmung der lateralen geometrischen Strukturen mit hochaufl{\"o}sender Elektronenbeugung (SPA-LEED) und Rastertunnelmikroskopie (STM), sowie der Adsorptionsh{\"o}hen mit der Methode der stehenden R{\"o}ntgenwellenfeldern (NIXSW). Hochaufl{\"o}sende Elektronenenergieverlustspektroskopie (HREELS) wurde verwendet, um die vibronische Struktur und den dynamischen Ladungstransfer an der Grenzfl{\"a}che zu charakterisieren. Die elektronische Struktur und der Ladungstransfer in die Molek{\"u}le wurde mit ultraviolett Photoelektronenspektroskopie (UPS) gemessen. Die wichtigsten Ergebnisse dieser Arbeit betreffen den Zusammenhang zwischen Adsorbat-Substrat Wechselwirkung und der Adsorbat-Adsorbat Wechselwirkung von Phthalocyaninen im Submonolagenbereich.}, subject = {Oberfl{\"a}che}, language = {de} } @phdthesis{Scherdel2009, author = {Scherdel, Christian}, title = {Kohlenstoffmaterialien mit nanoskaliger Morphologie - Entwicklung neuartiger Syntheserouten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-45325}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Hochpor{\"o}se Kohlenstoffaerogele, die {\"u}ber den Sol-Gel-Prozeß auf der Basis von Resorzin und Formaldehyd hergestellt werden, sind Werkstoffe mit beeindruckenden physikalischen Eigenschaften. Leider werden bisher nur geringe Mengen an Kohlenstoffaerogelen produziert und aus Kostengr{\"u}nden auf g{\"u}nstigere Materialien mit vergleichsweise schlechteren Eigenschaften zur{\"u}ckgegriffen. Um diesen Nachteil zu nivellieren lag die Motivation der vorliegenden Arbeit in der Entwicklung neuer Syntheserouten f{\"u}r Kohlenstoffmaterialien mit nanoskaliger Morphologie, wobei insbesondere auf kosteng{\"u}nstige Edukte und/oder einfache Prozessierung zur{\"u}ckgegriffen werden sollte. Als in Frage kommende Eduktsysteme wurden Zucker, sowie Hydroxybenzol-Formaldehyd-Derivate ausgew{\"a}hlt. Die hergestellten Kohlenstoffe wurden haupts{\"a}chlich mit Elektronenmikroskopie, Gassorption und R{\"o}ntgenkleinwinkelstreuung (SAXS) charakterisiert. Um Fehlinterpretationen der experimentellen Daten f{\"u}r das neue Materialsystem zu vermeiden, war ein umfangreiches Wissen zu den Charakterisierungsmethoden und den diesen zugrundeliegenden physikalischen Prinzipien notwendig. Kohlenstoffpulver basierend auf sph{\"a}rischen Resorzin-Formaldehyd Suspensionen und Sedimenten bilden eine v{\"o}llig neue M{\"o}glichkeit zur Erzeugung von Kohlenstoffnanokugeln. Im Rahmen dieser Arbeit wurde deshalb systematisch der Bereich der Syntheseparameter im RF-System zu den nicht-monolithischen Parameters{\"a}tzen hin vervollst{\"a}ndigt. Anhand der bestimmten Daten konnte diese Stoffklasse umfassend und detailliert charakterisiert und interpretiert werden. Die Partikelgr{\"o}ße h{\"a}ngt im Wesentlichen von der Katalysatorkonzentration und in geringerem Maße von der Eduktmenge in der Startl{\"o}sung ab. Die ermittelte untere Grenze der Partikelgr{\"o}ße aus stabilen kolloidalen Dispersionen betr{\"a}gt ca. 30 nm. Gr{\"o}ßere Partikel als 5 µm konnten trotz Modifikation der Syntheseroute nicht erzeugt werden. Eine Absch{\"a}tzung {\"u}ber den Aggregationsgrad der Kohlenstoffpulver wurde durchgef{\"u}hrt. Eine Beimischung von Phenol verringert in diesem System zum einen die Partikelgr{\"o}ße und erzeugt zunehmend nicht-sph{\"a}rische Strukturen. Die aus Gassorption, SAXS und dynamischer Lichtstreuung (DLS) ermittelten Partikelgr{\"o}ßen stimmen gut {\"u}berein. Bei der Pyrolyse schrumpfen die Partikel auf 84\% des Ausgangswerts (Partikeldurchmesser). Ein Fokus dieser Arbeit lag in der Herstellung por{\"o}ser Kohlenstoffe mit Phenol und Formaldehyd (PF) als Eduktbasis und unterkritischer Trocknung (Kohlenstoffxerogele). Um die Bandbreite der Eigenschaften der resultierenden Kohlenstoffxerogele zu erweitern, wurden zahlreiche Modifikationen der Syntheseparameter und im Herstellungsprozeß durchgef{\"u}hrt. Die Ergebnisse zeigen, daß im Eduktsystem Phenol-Formaldehyd in w{\"a}ßriger L{\"o}sung mit Na2CO3 als basischem Katalysator prinzipiell por{\"o}se Xerogele herstellbar sind; allerdings verhindert eine ungew{\"o}hnliche Gelierkinetik (Flockenbildung statt Sol-Gel-{\"U}bergang) eine umfassende Interpretation des Systems, da die Reproduzierbarkeit der Ergebnisse nicht gew{\"a}hrleistet ist. Bei Phenol-Formaldehyd in w{\"a}ßriger L{\"o}sung und NaOH als Katalysator kommt es meist zu einem Kollabieren des Gelnetzwerks w{\"a}hrend der Trocknung. Lediglich bei hohem Formaldehyd{\"u}berschuß zeigt sich ein enger Bereich, in dem Xerogele mit geringer Dichte (rhomin = 0,22 g/cm3) und relevantem Mesoporenvolumen von bis zu 0,59 cm3/g synthetisierbar sind. Die interessanteste Kombination im PF-System ergibt sich mit HCl als Katalysator und n-Propanol als L{\"o}sungsmittel. Hier sind hochpor{\"o}se Kohlenstoffxerogele mit geringen Dichten (rhomin = 0,23 g/cm3) und f{\"u}r Xerogele sehr hoher Mesoporosit{\"a}t von bis zu Vmeso = 0,85 cm3/g m{\"o}glich. Damit ist es im Rahmen dieser Arbeit erstmals gelungen {\"u}ber konvektive Trocknung homogene hochpor{\"o}se Xerogel-Formk{\"o}rper auf PF-Basis zu synthetisieren. Aus der {\"U}berwachung des Sol-Gel-Prozesses mit Detektion der Soltemperatur konnten wichtige Erkenntnisse {\"u}ber exo- und endotherme Vorg{\"a}nge gewonnen werden. Zudem zeigt die Zeitabh{\"a}ngigkeit der Soltemperatur Gemeinsamkeiten f{\"u}r alle untersuchten Hydroxybenzol-Formaldehyd-Systeme. So kann der Gelpunkt der Ans{\"a}tze zuverl{\"a}ssig und auch reproduzierbar anhand eines zweiten lokalen Temperaturmaximums ermittelt werden, welches mit einer Gelpunktsenthalpie korreliert wird. Damit ist auch eine Prozeßkontrolle, z.B. f{\"u}r die Kombination mit Partikeltechnologien, m{\"o}glich. Die zugrundeliegenden Strukturbildungsmechanismen, Sol-Gel-Prozeß einerseits und Trocknung andererseits, wurden in-situ mittels SAXS beobachtet und anhand der gewonnenen Daten diskutiert und bewertet. Eine vollst{\"a}ndige Adaption des etablierten und akzeptierten Bildungsmechanismus von RF basierten Aerogelen (Partikelbildung aus Kondensationskeimen und Partikelwachstum) f{\"u}r das PF-System wird ausgeschlossen. Vielmehr scheint bei den untersuchten PF-Systemen auch eine Mikrophasenseparation als konkurrierender Prozeß zur Partikelbildung von Relevanz zu sein.}, subject = {Sol-Gel-Verfahren}, language = {de} }