@phdthesis{Bischler2018, author = {Bischler, Thorsten David}, title = {Data mining and software development for RNA-seq-based approaches in bacteria}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166108}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {RNA sequencing (RNA-seq) has in recent years become the preferred method for gene expression analysis and whole transcriptome annotation. While initial RNA-seq experiments focused on eukaryotic messenger RNAs (mRNAs), which can be purified from the cellular ribonucleic acid (RNA) pool with relative ease, more advanced protocols had to be developed for sequencing of microbial transcriptomes. The resulting RNA-seq data revealed an unexpected complexity of bacterial transcriptomes and the requirement for specific analysis methods, which in many cases is not covered by tools developed for processing of eukaryotic data. The aim of this thesis was the development and application of specific data analysis methods for different RNA-seq-based approaches used to gain insights into transcription and gene regulatory processes in prokaryotes. The differential RNA sequencing (dRNA-seq) approach allows for transcriptional start site (TSS) annotation by differentiating between primary transcripts with a 5'-triphosphate (5'-PPP) and processed transcripts with a 5'-monophosphate (5'-P). This method was applied in combination with an automated TSS annotation tool to generate global trancriptome maps for Escherichia coli (E. coli) and Helicobacter pylori (H. pylori). In the E. coli study we conducted different downstream analyses to gain a deeper understanding of the nature and properties of transcripts in our TSS map. Here, we focused especially on putative antisense RNAs (asRNAs), an RNA class transcribed from the opposite strand of known protein-coding genes with the potential to regulate corresponding sense transcripts. Besides providing a set of putative asRNAs and experimental validation of candidates via Northern analysis, we analyzed and discussed different sources of variation in RNA-seq data. The aim of the H. pylori study was to provide a detailed description of the dRNA-seq approach and its application to a bacterial model organism. It includes information on experimental protocols and requirements for data analysis to generate a genome-wide TSS map. We show how the included TSS can be used to identify and analyze transcriptome and regulatory features and discuss challenges in terms oflibrary preparation protocols, sequencing platforms, and data analysis including manual and automated TSS annotation. The TSS maps and associated transcriptome data from both H. pylori and E. coli were made available for visualization in an easily accessible online browser. Furthermore, a modified version of dRNA-seq was used to identify transcriptome targets of the RNA pyrophosphohydrolase (RppH) in H. pylori. RppH initiates 5'-end-dependent degradation of transcripts by converting the 5'-PPP of primary transcripts to a 5'-P. I developed an analysis method, which uses data from complementary DNA (cDNA) libraries specific for transcripts carrying a 5'-PPP, 5'-P or both, to specifically identify transcripts modified by RppH. For this, the method assessed the 5'-phosphorylation state and cellular concentration of transcripts in rppH deletion in comparison to strains with the intact gene. Several of the identified potential RppH targets were further validated via half-life measurements and quantification of their 5'-phosphorylation state in wild-type and mutant cells. Our findings suggest an important role for RppH in post-transcriptional gene regulationin H. pylori and related organisms. In addition, we applied two RNA-seq -based approaches, RNA immunoprecipitation followed by sequencing (RIP-seq) and cross-linking immunoprecipitation followed by sequencing (CLIP-seq), to identify transcripts bound by Hfq and CsrA, two RNA-binding proteins (RBPs) with an important role in post-transcriptional regulation. For RIP-seq -based identification of CsrA binding regions in Campylobacter jejuni(C. jejuni), we used annotation-based analysis and, in addition, a self-developed peak calling method based on a sliding window approach. Both methods revealed flaA mRNA, encoding the major flagellin, as the main target and functional analysis of identified targets showed a significant enrichment of genes involved in flagella biosynthesis. Further experimental analysis revealed the role of flaA mRNA in post-transcriptional regulation. In comparison to RIP-seq, CLIP-seq allows mapping of RBP binding sites with a higher resolution. To identify these sites an approach called "block-based peak calling" was developed and resulting peaks were used to identify sequence and structural constraints required for interaction of Hfq and CsrA with Salmonella transcripts. Overall, the different RNA-seq-based approaches described in this thesis together with their associated analyis pipelines extended our knowledge on the transcriptional repertoire and modes of post-transcriptional regulation in bacteria. The global TSS maps, including further characterized asRNA candidates, putative RppH targets, and identified RBP interactomes will likely trigger similar global studies in the same or different organisms or will be used as a resource for closer examination of these features.}, subject = {Bakterien}, language = {en} } @phdthesis{Horn2017, author = {Horn, Hannes}, title = {Analysis and interpretation of (meta-)genomic data from host-associated microorganisms}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152035}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Host-microbe interactions are the key to understand why and how microbes inhabit specific environments. With the scientific fields of microbial genomics and metagenomics, evolving on an unprecedented scale, one is able to gain insights in these interactions on a molecular and ecological level. The goal of this PhD thesis was to make (meta-)genomic data accessible, integrate it in a comparative manner and to gain comprehensive taxonomic and functional insights into bacterial strains and communities derived from two different environments: the phyllosphere of Arabidopsis thaliana and the mesohyl interior of marine sponges. This thesis focused first on the de novo assembly of bacterial genomes. A 5-step protocol was developed, each step including a quality control. The examination of different assembly software in a comparative way identified SPAdes as most suitable. The protocol enables the user to chose the best tailored assembly. Contamination issues were solved by an initial filtering of the data and methods normally used for the binning of metagenomic datasets. This step is missed in many published assembly pipelines. The described protocol offers assemblies of high quality ready for downstream analysis. Subsequently, assemblies generated with the developed protocol were annotated and explored in terms of their function. In a first study, the genome of a phyllosphere bacterium, Williamsia sp. ARP1, was analyzed, offering many adaptions to the leaf habitat: it can deal with temperature shifts, react to oxygen species, produces mycosporins as protection against UV-light, and is able to uptake photosynthates. Further, its taxonomic position within the Actinomycetales was infered from 16S rRNA and comparative genomics showing the close relation between the genera Williamsia and Gordonia. In a second study, six sponge-derived actinomycete genomes were investigated for secondary metabolism. By use of state-of-the-art software, these strains exhibited numerous gene clusters, mostly linked to polykethide synthases, non-ribosomal peptide synthesis, terpenes, fatty acids and saccharides. Subsequent predictions on these clusters offered a great variety of possible produced compounds with antibiotic, antifungal or anti-cancer activity. These analysis highlight the potential for the synthesis of natural products and the use of genomic data as screening toolkit. In a last study, three sponge-derived and one seawater metagenomes were functionally compared. Different signatures regarding the microbial composition and GC-distribution were observed between the two environments. With a focus on bacerial defense systems, the data indicates a pronounced repertoire of sponge associated bacteria for bacterial defense systems, in particular, Clustered Regularly Interspaced Short Palindromic Repeats, restriction modification system, DNA phosphorothioation and phage growth limitation. In addition, characterizing genes for secondary metabolite cluster differed between sponge and seawater microbiomes. Moreover, a variety of Type I polyketide synthases were only found within the sponge microbiomes. With that, metagenomics are shown to be a useful tool for the screening of secondary metabolite genes. Furthermore, enriched defense systems are highlighted as feature of sponge-associated microbes and marks them as a selective trait.}, subject = {Bakterien}, language = {en} } @phdthesis{MoitinhoeSilva2014, author = {Moitinho e Silva, Lucas}, title = {Exploration of microbial diversity and function in Red Sea sponges by deep sequencing}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103836}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Marine sponges (phylum Porifera) are simple, sessile, filter-feeder animals. Microbial symbionts are commonly found in the sponge internal tissue, termed the mesohyl. With respect to the microbial content, sponges are classified as either low-microbial abundance sponges (LMA), or high-microbial abundance sponges (HMA). The HMA/LMA dichotomy was explored in this Thesis using the Red Sea sponges as experimental models. A range of methods encompassing transmission electron microscopy, 16S rRNA gene deep sequencing, and metatranscriptomics was employed towards this goal. Here, particular emphasis was placed on the functional analysis of sponge microbiomes. The Red Sea sponges Stylissa carteri, Xestospongia testudinaria, Amphimedon ochracea, and Crella cyathophora were classified as HMA or LMA sponges using transmission electron microscopy. The diversity, specificity, and transcriptional activity of microbes associated with the sponges S. carteri (LMA) and X. testudinaria (HMA) and seawater were investigated using 16S rRNA amplicon pyrosequencing. The microbial composition of S. carteri was more similar to that of seawater than to that of X. testudinaria, which is consistent with the observation that the sequence data set of S. carteri contained many more possibly seawater sequences (~24\%) than the X. testudinaria data set (~6\%). The most abundant operational taxonomic units (OTUs) were shared between all three sources (S. carteri, X. testudinaria, seawater), while rare OTUs were unique to any given source. Despite this high degree of overlap, each sponge species contained its own specific microbiota. S. carteri microbiomes were enriched of Gammaproteobacteria and members of the genus Synechococcus and Nitrospira. Enriched members of X. testudinaria microbiomes included Chloroflexi, Deferribacteres, and Actinobacteria. The transcriptional activity of sponge-associated microorganisms was assessed by comparing 16S rRNA gene with transcript amplicons, which showed a good correlation. The microbial functional gene repertoire of sponges and seawater from the Red Sea (X. testudinaria, S. carteri) and the Mediterranean (Aplysina aerophoba, Dysidea avara) were investigated with the environmental microarray GeoChip 4. Amplicon sequencing was performed alongside in order to assess microbial diversity. The typical microbial diversity patterns characteristic of HMA (abundance of Gammaproteobacteria, Chloroflexi, Acidobacteria, Deferribacteres, and others) and LMA sponges (abundance of Alpha-, Beta-, Gammaproteobacteria, Cyanobacteria, and Bacteroidetes) were confirmed. The HMA/LMA dichotomy was stronger than any possible geographic pattern based on microbial diversity (amplicon) and functional genes (GeoChip). However upon inspection of individual genes detected by GeoChip, very few specific differences were discernible, including differences related to microbial ammonia oxidation, ammonification (higher gene abundance in sponges over seawater) as well as denitrification (lower gene abundance). Furthermore, a higher abundance of a gene, pcc, representative of archaeal autotrophic carbon fixation was noted in sponges over seawater. Thirdly, stress-related genes, in particular those related to radiation, were found in lower abundances in sponge microbiomes than in seawater. With the exception of few documented specific differences, the functional gene repertoire between the different sources appeared largely similar. The most actively expressed genes of S. carteri microbiomes were investigated with metatranscriptomics. Prokaryotic mRNA was enriched from sponge total RNA, sequenced using Illumina HiSeq technology, and annotated with the metagenomics Rapid Annotation using Subsystem Technology (MG-RAST) pipeline. High expression of archaeal ammonia oxidation and photosynthetic carbon fixation by members of the genus Synechococcus was detected. Functions related to stress response and membrane transporters were among the most highly expressed by S. carteri symbionts. Unexpectedly, gene functions related to methylotrophy were highly expressed by gammaproteobacterial symbionts. The presence of seawater-derived microbes is indicated by the phylogenetic proximity of organic carbon transporters to orthologs of members from the SAR11 clade. In summary, the most expressed functions of the S. carteri-associated microbial community were revealed and linked to the dominant taxonomic members of the microbiome. In conclusion, HMA and LMA Red Sea sponges were used as models to gain insights into relevant themes in sponge microbiology, i.e. diversity, specificity, and functional activities. Overall, my Thesis contributes to a better understanding of sponge-associated microbial communities, and the implications of this association to marine ecology.}, subject = {Meeresschw{\"a}mme}, language = {en} } @phdthesis{Angermeier2011, author = {Angermeier, Hilde Gabriele}, title = {Molecular and ecological investigations of Caribbean sponge diseases}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56855}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {W{\"a}hrend gewinnbringende Assoziationen von Schw{\"a}mmen mit Mikroorganismen in den letzten Jahren viel Aufmerksamkeit erhalten haben, wurde weit weniger in die Interaktion von Schw{\"a}mmen mit m{\"o}glicherweise pathogenen Mikroben investiert. Somit war es das Ziel dieser Studie zwei ausgew{\"a}hlte Karibische Schwammkrankheiten namens „Sponge Orange Band" und „Sponge White Patch" mittels {\"o}kologischer und molekularer Methoden zu untersuchen. Die Sponge Orange Band (SOB) Erkrankung bef{\"a}llt den bedeutenden karibischen Fass-Schwamm Xestospongia muta, der zu den bakterienhaltigen (HMA) Schw{\"a}mmen gez{\"a}hlt wird, w{\"a}hrend die Sponge White Patch (SWP) Erkrankung den h{\"a}ufig vorkommenden Seil-Schwamm Amphimedon compressa betrifft, der zu den bakterienarmen (LMA) Schw{\"a}mmen geh{\"o}rt. F{\"u}r beide Karibischen Schwammkrankheiten konnte ich einen Krankheitsverlauf beschreiben, der mit massiver Gewebszerst{\"o}rung und dem Verlust charakteristischer mikrobieller Signaturen einhergeht. Obwohl ich zeigen konnte, dass zus{\"a}tzliche Bakterienarten die gebleichten Schwammbereiche kolonisieren, lieferten meine Infektionsversuche in beiden F{\"a}llen keinen Beweis f{\"u}r die Beteiligung eines mikrobiellen Pathogens als Krankheitserreger. Somit liegen die eigentlichen Ausl{\"o}ser der Erkrankungen Sponge Orange Band als auch Sponge White Patch noch immer im Dunkeln.}, subject = {Meeresschw{\"a}mme}, language = {en} } @phdthesis{Wippel2012, author = {Wippel, Carolin}, title = {Alterations of brain dendrite and synapse structure by the Streptococcus pneumoniae neurotoxin pneumolysin - Insights and pharmacological modulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72016}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Streptococcus pneumoniae (Pneumococcus) is one of the leading causes of childhood meningitis,pneumonia and sepsis. Despite the availability of childhood vaccination programs and antimicrobial agents, childhood pneumococcal meningitis is still a devastating illness with mortality rates among the highest of any cause of bacterial meningitis. Especially in low-income countries, where medical care is less accessible, mortality rates up to 50 \% have been reported. In surviving patients, neurological sequelae, including hearing loss, focal neurological deficits and cognitive impairment, is reported in 30 to 50 \%. Growing resistance of pneumococci towards conventional antibiotics emphasize the need for effective therapies and development of effective vaccines against Streptococcus pneumoniae. One major virulence factor of Streptococcus pneumoniae is the protein toxin Pneumolysin (PLY). PLY belongs to a family of structurally related toxins, the so-called cholesterol-dependent cytolysins (CDCs). Pneumolysin is produced by almost all clinical isolates of the bacterium. It is expressed during the late log phase of bacterial growth and gets released mainly through spontaneous autolysis of the bacterial cell. After binding to cholesterol in the host cell membranes, oligomerization of up to 50 toxin monomers and rearrangement of the protein structure, PLY forms large pores, leading to cell lysis in higher toxin concentrations. At sub-lytic concentrations, however, PLY mediates several other effects, such as activation of the classic complement pathway and the induction of apoptosis. First experiments with pneumococcal strains, deficient in pneumolysin, showed a reduced virulence of the organism, which emphasizes the contribution of this toxin to the course of bacterial meningitis and the urgent need for the understanding of the multiple mechanisms leading to invasive pneumococcal disease. The aim of this thesis was to shed light on the contribution of pneumolysin to the course of the disease as well as to the mental illness patients are suffering from after recovery from pneumococcal meningitis. Therefore, we firstly investigated the effects of sub-lytic pneumolysin concentrations onto primary mouse neurons, transfected with a GFP construct and imaged with the help of laser scanning confocal microscopy. We discovered two major morphological changes in the dendrites of primary mouse neurons: The formation of focal swellings along the dendrites (so-called varicosities) and the reduction of dendritic spines. To study these effects in a more complex system, closer to the in vivo situation, we established a reproducible method for acute brain slice culturing. With the help of this culturing method, we were able to discover the same morphological changes in dendrites upon challenge with sub-lytic concentrations of pneumolysin. We were able to reverse the seen alterations in dendritic structure with the help of two antagonists of the NMDA receptor, connecting the toxin´s mode of action to a non-physiological stimulation of this subtype of glutamate receptors. The loss of dendritic spines (representing the postsynapse) in our brain slice model could be verified with the help of brain slices from adult mice, suffering from pneumococcal meningitis. By immunohistochemical staining with an antibody against synapsin I, serving as a presynaptic marker, we were able to identify a reduction of synapsin I in the cortex of mice, infected with a pneumococcal strain which is capable of producing pneumolysin. The reduction of synapsin I was higher in these brain slices compared to mice infected with a pneumococcal strain which is not capable of producing pneumolysin, illustrating a clear role for the toxin in the reduction of dendritic spines. The fact that the seen effects weren´t abolished under calcium free conditions clarifies that not only the influx of calcium through the pneumolysin-pore is responsible for the alterations. These findings were further supported by calcium imaging experiments, where an inhibitor of the NMDA receptor was capable of delaying the time point, when the maximum of calcium influx upon PLY challenge was reached. Additionally, we were able to observe the dendritic beadings with the help of immunohistochemistry with an antibody against MAP2, a neuron-specific cytoskeletal protein. These observations also connect pneumolysin´s mode of action to excitotoxicity, as several studies mention the aggregation of MAP2 in dendritic beadings in response to excitotoxic stimuli. All in all, this is the first study connecting pneumolysin to excitotoxic events, which might be a novel chance to tie in other options of treatment for patients suffering from pneumococcal meningitis.}, subject = {Nervenzelle}, language = {en} }