@phdthesis{Schwedhelm2009, author = {Schwedhelm, Kai Florian}, title = {Optimierte Methoden der Magnetresonanz-Spektroskopie zur molekularen Charakterisierung neuartiger Wirkstoffe gegen Infektionskrankheiten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-38535}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {In diesem Projekt wurde die Wechselwirkung des PPIase-Enzyms MIP mit Kollagen IV unter- sucht. MIP ist maßgeblich f{\"u}r die Infekti{\"o}sit{\"a}t von Legionella pneumophila verantwortlich, einem Bakterium, welches im Menschen schwere Lungenentz{\"u}ndungen ausl{\"o}sen kann. Das Enzym zeigt eine hohe Affinit{\"a}t gegen{\"u}ber einem kurzen Peptidsequenzabschnitt in Kolla- gen IV (genannt „P290"), welches unter anderem im Epithel der Lunge zu finden ist. Die Interaktionsoberfl{\"a}che der Molek{\"u}le wurde durch den Einsatz eines paramagnetischen Spin-Labels in NMR-Experimenten charakterisiert. Mit Hilfe von Docking und Molek{\"u}ldy- namiksimulationen konnte aus diesen Daten ein Modell des MIP-Kollagen-Komplexes be- rechnet werden. Es wurde gezeigt, dass MIP als Dimer in der Lage ist, nach Kollagen IV zu „greifen" und sich dann an das Molek{\"u}l heranzuziehen. Wahrscheinlich dient dieser Mechanismus der Adh{\"a}- sion von L. pneumophila an die Wirtszelle. Neben der zuvor postulierten Destabilisierung von Kollagen IV durch MIP, welche hier nicht beobachtet wurde, k{\"o}nnte die Adh{\"a}sion ein wichtiger Faktor f{\"u}r die Virulenz von L. pneumophila sein. Weiterhin wurde die inhibitorische Wirkung des isolierten Peptids P290 auf die biologische PPIase-Aktivit{\"a}t von MIP untersucht. Durch NMR-Messungen und anschließenden Mole- k{\"u}ldynamiksimulationen konnte gezeigt werden, dass P290 sich stabil in die Bindungsta- sche von MIP einlagert und durch den Sequenzabschnitt -CYS130-PRO131---TRP134- das Enzym blockiert. Die {\"u}brigen Aminos{\"a}uren in P290 dienen der Stabilisierung des Kom- plexes und sorgen f{\"u}r die Selektivit{\"a}t von P290, welches, im Unterschied zu bekannten Wirkstoffen, das humane Homolog zu MIP nicht inhibiert. Die Vorhersagen der Simulatio- nen konnten durch ein Peptid Microarray und Messungen der enzymatischen Aktivit{\"a}t von MIP in PPIase-Assays best{\"a}tigt werden. Die Ergebnisse wurden zur Optimierung von P290 eingesetzt, indem die Peptidsequenz durch den Austausch zweier Aminos{\"a}uren ver{\"a}ndert und das Molek{\"u}l zu einem Ring geschlossen wurde. Die entstandene Struktur besitzt deut- lich verbesserte Bindungseigenschaften und k{\"o}nnte k{\"u}nftig als Basis f{\"u}r eine neue Klasse von Wirkstoffen gegen L. pneumophila dienen. In diesem Projekt wurde eine Methode zur Aufkl{\"a}rung der Molek{\"u}lstruktur neuartiger Wirkstoffe gegen Malaria im Komplex mit ihrem paramagnetischen Zielmolek{\"u}l etabliert und weiterentwickelt. Die Vorgehensweise leitet intermolekulare Distanzinformationen aus der sog. paramagnetischen Relaxation ab, einem Effekt, der den Einsatz klassischer Me- thoden zur Molek{\"u}lstrukturaufkl{\"a}rung mittels NMR verhindert. Es werden drei Parameter durch NMR-Spektroskopie bestimmt: 1. die longitudinale Relaxationszeit der Wasserstoff- atome in Wirkstoffmolek{\"u}l, 2. die effektive Korrelationszeit des Komplexes und 3. der Spin- Zustand des Eisenions im Zielmolek{\"u}l. Mit Hilfe dieser Messmethode konnte die Komplexstruktur mehrerer bekannter Medika- mente gegen Malaria aufgekl{\"a}rt werden. Weiterhin wurden zwei neue Klassen von Wirkstof- fen untersucht, die C,C-gekoppelten Naphthylisoquinolin-Alkaloide und die N,C-gekoppelte Naphthylisoquinolin-Alkaloide. In {\"U}bereinstimmung mit theoretischen Vorhersagen aus der Literatur lagern sich die Wirkstoffe stets um einen Winkel geneigt und in Richtung des Randes des Zielmolek{\"u}ls verschoben an. Diese Konfiguration maximiert die attraktiven \&\#960;- \&\#960;-Wechselwirkungen zwischen den Molek{\"u}len. Aufgrund der gewonnenen Ergebnisse aus NMR, UV-Spektroskopie und Massenspektrome- trie konnte die Existenz eines bisher nicht bekannten Tetramer-Komplexes nachgewiesen werden, welcher eine wichtige Zwischenstufe in der Biokristallisation von H{\"a}mozoin durch die Malariaparasiten darstellen k{\"o}nnte, und Ansatzpunkte f{\"u}r den weiterhin nicht vollst{\"a}n- dig bekannten Wirkmechanismus der meisten Antimalaria-Wirkstoffe liefert. F{\"u}r die Naphthylisoquinolin-Alkaloide zeigte sich weiterhin, dass Wasser eine essenzielle Rolle in der Komplexbildung spielt. In Molek{\"u}ldynamiksimulationen der N,C-gekoppelten Naphthylisoquinolin-Alkaloide konnte die Entstehung einer Wasserstoffbr{\"u}cke zwischen Wirkstoff und Zielmolek{\"u}l gezeigt werden, welche einen zus{\"a}tzlichen Weg der Komplex- stabilisierung neben den bereits bekannten \&\#960;-\&\#960;-Wechselwirkungen aufzeigt. Die N,C-NIQs konnten erstmals auch bei einem pH-Wert von 5,6 beobachtet werden, einer chemischen Umgebung wie sie auch in-vivo in der Verdauungsvakuole des Malariaparasiten herrscht.}, subject = {NMR-Spektroskopie}, language = {de} } @phdthesis{Balla2009, author = {Balla, D{\´a}vid Zsolt}, title = {Intermolecular zero-quantum coherence detection for in vivo MR spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40282}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Nuclear magnetic resonance has numerous applications for in vivo diagnostics. However, methods requiring homogeneous magnetic fields, particularly magnetic resonance spectroscopy (MRS) techniques, have limited applicability in regions near or on anatomical boundaries that cause strong inhomogeneities. In cases where the shim system can not or just partly correct for these inhomogeneities, methods based on intermolecular multiple quantum coherence (iMQC) detection can provide an alternative solution for in vivo MRS. This dissertation presented the development, validation and application potential of a novel MRS pulse sequence detecting intermolecular zero-quantum coherences (iZQC) with special emphasis on in vivo experiments. In addition, the detection limit and spectral behaviour of iZQC-MRS under modelled realistic conditions were systematically approached for the first time. Based on the original sequence used to detect two dimensional (2D) iZQC-spectra, dubbed HOMOGENIZED, methodological development led to increased sensitivity and water suppression, and decreased T2-relaxation effects through the application of a frequency selective 90° RF-pulse in place of a non selective beta-pulse. Best water suppression was achieved by placing a pair of selective refocusing units immediately prior to the acquisition window. The same placement was found to be optimal also for single voxel localization units based on slice selective spin echo refocusing. By voxel selection before the iZQC-MRS sequence, the chemical shift artefact could be avoided. However, this led to significant residual signal from outside the voxel. Analytical derivations of signal evolution for several sequences presented in this dissertation provide useful additions to the iZQC MRS theory. In vivo applications of the developed sequence provided high quality spectra in the central nervous system of the rat, the mouse brain and in subcutaneous xenograft tumor grown on the thigh of the mouse. In all these 2D spectra, the limiting factor of the resolution in the indirect dimension was the digital sampling rate, rather than inhomogeneous line broadening. Nevertheless, linewidths of the cross-peaks were similar or narrower than along the direct axis, where the sampling rate was about ten times higher. The first MR spectroscopic investigation of the rat spinal cord at 17.6 T was performed. Through its insensitivity to macroscopic field inhomogeneities, the localized iZQC method allowed for the selection of larger voxels than conventional methods and still provided the same spectral resolution. This property was used also in tumor tissue to propel the relative signal to noise (SNR) efficiency of the iZQC spectroscopy for the first time above the SNR efficiency of a conventional sequence. Future applications for fast metabolite count in large inhomogeneous organs, like a tumor, are thinkable. Extensive simulations and phantom experiments assessed the limit of iZQC cross-peak detection in presence of local field distortions. The order of maximum volume ratio between dipole source and voxel was found to be between 0.1 \% and 1 \%. It is an essential conclusion of this study that the dominant effect of microscopic to mesoscopic inhomogeneities on iZQC spectra under general in vivo conditions, like for voxels greater than (1 mm)³ and metabolite concentrations in the millimolar range, is a cross-peak intensity reduction and not line broadening. The iZQC method provided resolution enhancement in comparison to conventional MRS even in the presence of clustered paramagnetic microparticles. However, the vision of iZQC spectroscopy in green leafs or the lung epithelium has to be, unfortunately, abandoned, because cross-peaks can be observed until the volume of the separating medium is much larger than the volume of local dipole sources. Intermolecular zero-quantum coherence spectroscopy remains an exciting field in NMR research on living organisms. It provides access to the monitoring of relative metabolite concentration changes in the presence of microscopic iron particles, which raises realistic hopes for new applications in studies using stained stem cells.}, subject = {NMR-Spektroskopie}, language = {en} }