@article{KochFroehlich2020, author = {Koch-Fr{\"o}hlich, Melanie}, title = {S'inventer {\`a} partir de l'autre : Les Origines d'Amin Maalouf}, series = {promptus - W{\"u}rzburger Beitr{\"a}ge zur Romanistik}, volume = {6}, journal = {promptus - W{\"u}rzburger Beitr{\"a}ge zur Romanistik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244268}, pages = {69-84}, year = {2020}, abstract = {The present article examines the narrative modes in which Lebanese author Amin Maalouf investigates his roots in Origines a hybrid work which stands in contrast with his previous essays and fictions as to its (auto)biographical dimension. Resembling what Dominique Viart and Bruno Vercier in their analysis of predominant themes and narrative strategies in contemporary French literature name «r{\´e}cit de filiation», Maalouf's quest for his familial past explores the concept of intergenerational transmission of memory. However, despite this individual postmemorial approach, Maalouf's intimate writing is intrinsically linked with the complex history of the Ottoman Empire and therefore with collective narratives of war, diasporic identities, and migration relating to the present time or the recent past.}, language = {fr} } @article{DuezelvanPraagSendtner2016, author = {D{\"u}zel, Emrah and van Praag, Henriette and Sendtner, Michael}, title = {Can physical exercise in old age improve memory and hippocampal function?}, series = {Brain}, volume = {139}, journal = {Brain}, number = {3}, doi = {10.1093/brain/awv407}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190721}, pages = {662-673}, year = {2016}, abstract = {Physical exercise can convey a protective effect against cognitive decline in ageing and Alzheimer's disease. While the long-term health-promoting and protective effects of exercise are encouraging, it's potential to induce neuronal and vascular plasticity in the ageing brain is still poorly understood. It remains unclear whether exercise slows the trajectory of normal ageing by modifying vascular and metabolic risk factors and/or consistently boosts brain function by inducing structural and neurochemical changes in the hippocampus and related medial temporal lobe circuitry—brain areas that are important for learning and memory. Hence, it remains to be established to what extent exercise interventions in old age can improve brain plasticity above and beyond preservation of function. Existing data suggest that exercise trials aiming for improvement and preservation may require different outcome measures and that the balance between the two may depend on exercise intensity and duration, the presence of preclinical Alzheimer's disease pathology, vascular and metabolic risk factors and genetic variability.}, language = {en} } @article{HassounaOttWuestefeldetal.2016, author = {Hassouna, I. and Ott, C. and W{\"u}stefeld, L. and Offen, N. and Neher, R. A. and Mitkovski, M. and Winkler, D. and Sperling, S. and Fries, L. and Goebbels, S. and Vreja, I. C. and Hagemeyer, N. and Dittrich, M. and Rossetti, M. F. and Kr{\"o}hnert, K. and Hannke, K. and Boretius, S. and Zeug, A. and H{\"o}schen, C. and Dandekar, T. and Dere, E. and Neher, E. and Rizzoli, S. O. and Nave, K.-A. and Sir{\´e}n, A.-L. and Ehrenreich, H.}, title = {Revisiting adult neurogenesis and the role of erythropoietin for neuronal and oligodendroglial differentiation in the hippocampus}, series = {Molecular Psychiatry}, volume = {21}, journal = {Molecular Psychiatry}, number = {12}, doi = {10.1038/mp.2015.212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186669}, pages = {1752-1767}, year = {2016}, abstract = {Recombinant human erythropoietin (EPO) improves cognitive performance in neuropsychiatric diseases ranging from schizophrenia and multiple sclerosis to major depression and bipolar disease. This consistent EPO effect on cognition is independent of its role in hematopoiesis. The cellular mechanisms of action in brain, however, have remained unclear. Here we studied healthy young mice and observed that 3-week EPO administration was associated with an increased number of pyramidal neurons and oligodendrocytes in the hippocampus of similar to 20\%. Under constant cognitive challenge, neuron numbers remained elevated until >6 months of age. Surprisingly, this increase occurred in absence of altered cell proliferation or apoptosis. After feeding a \(^{15}\)N-leucine diet, we used nanoscopic secondary ion mass spectrometry, and found that in EPO-treated mice, an equivalent number of neurons was defined by elevated \(^{15}\)N-leucine incorporation. In EPO-treated NG2-Cre-ERT2 mice, we confirmed enhanced differentiation of preexisting oligodendrocyte precursors in the absence of elevated DNA synthesis. A corresponding analysis of the neuronal lineage awaits the identification of suitable neuronal markers. In cultured neurospheres, EPO reduced Sox9 and stimulated miR124, associated with advanced neuronal differentiation. We are discussing a resulting working model in which EPO drives the differentiation of non-dividing precursors in both (NG2+) oligodendroglial and neuronal lineages. As endogenous EPO expression is induced by brain injury, such a mechanism of adult neurogenesis may be relevant for central nervous system regeneration.}, language = {en} } @article{ChenMishraGlaessetal.2017, author = {Chen, Yi-chun and Mishra, Dushyant and Gl{\"a}ß, Sebastian and Gerber, Bertram}, title = {Behavioral Evidence for Enhanced Processing of the Minor Component of Binary Odor Mixtures in Larval Drosophila}, series = {Frontiers in Psychology}, volume = {8}, journal = {Frontiers in Psychology}, number = {1923}, doi = {10.3389/fpsyg.2017.01923}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170011}, year = {2017}, abstract = {A fundamental problem in deciding between mutually exclusive options is that the decision needs to be categorical although the properties of the options often differ but in grade. We developed an experimental handle to study this aspect of behavior organization. Larval Drosophila were trained such that in one set of animals odor A was rewarded, but odor B was not (A+/B), whereas a second set of animals was trained reciprocally (A/B+). We then measured the preference of the larvae either for A, or for B, or for "morphed" mixtures of A and B, that is for mixtures differing in the ratio of the two components. As expected, the larvae showed higher preference when only the previously rewarded odor was presented than when only the previously unrewarded odor was presented. For mixtures of A and B that differed in the ratio of the two components, the major component dominated preference behavior—but it dominated less than expected from a linear relationship between mixture ratio and preference behavior. This suggests that a minor component can have an enhanced impact in a mixture, relative to such a linear expectation. The current paradigm may prove useful in understanding how nervous systems generate discrete outputs in the face of inputs that differ only gradually.}, language = {en} } @phdthesis{Lyutova2019, author = {Lyutova, Radostina}, title = {Functional dissection of recurrent feedback signaling within the mushroom body network of the Drosophila larva}, doi = {10.25972/OPUS-18728}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187281}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Behavioral adaptation to environmental changes is crucial for animals' survival. The prediction of the outcome of one owns action, like finding reward or avoiding punishment, requires recollection of past experiences and comparison with current situation, and adjustment of behavioral responses. The process of memory acquisition is called learning, and the Drosophila larva came up to be an excellent model organism for studying the neural mechanisms of memory formation. In Drosophila, associative memories are formed, stored and expressed in the mushroom bodies. In the last years, great progress has been made in uncovering the anatomical architecture of these brain structures, however there is still a lack of knowledge about the functional connectivity. Dopamine plays essential roles in learning processes, as dopaminergic neurons mediate information about the presence of rewarding and punishing stimuli to the mushroom bodies. In the following work, the function of a newly identified anatomical connection from the mushroom bodies to rewarding dopaminergic neurons was dissected. A recurrent feedback signaling within the neuronal network was analyzed by simultaneous genetic manipulation of the mushroom body Kenyon cells and dopaminergic neurons from the primary protocerebral anterior (pPAM) cluster, and learning assays were performed in order to unravel the impact of the Kenyon cells-to-pPAM neurons feedback loop on larval memory formation. In a substitution learning assay, simultaneous odor exposure paired with optogenetic activation of Kenyon cells in fruit fly larvae in absence of a rewarding stimulus resulted in formation of an appetitive memory, whereas no learning behavior was observed when pPAM neurons were ablated in addition to the KC activation. I argue that the activation of Kenyon cells may induce an internal signal that mimics reward exposure by feedback activation of the rewarding dopaminergic neurons. My data further suggests that the Kenyon cells-to-pPAM communication relies on peptidergic signaling via short neuropeptide F and underlies memory stabilization.}, subject = {Lernen}, language = {en} } @article{TopolinskiStrack2015, author = {Topolinski, Sascha and Strack, Fritz}, title = {Corrugator activity confirms immediate negative affect in surprise}, series = {Frontiers in Psychology}, volume = {6}, journal = {Frontiers in Psychology}, number = {134}, doi = {10.3389/fpsyg.2015.00134}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144068}, year = {2015}, abstract = {The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for this switch in operating mode. Surprising stimuli are schema discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by surprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low surprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect) and frontalis (cultural surprise expression) activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes.}, language = {en} } @article{GrobFleischmannGruebeletal.2017, author = {Grob, Robin and Fleischmann, Pauline N. and Gr{\"u}bel, Kornelia and Wehner, R{\"u}diger and R{\"o}ssler, Wolfgang}, title = {The role of celestial compass information in Cataglyphis ants during learning walks and for neuroplasticity in the central complex and mushroom bodies}, series = {Frontiers in Behavioral Neuroscience}, volume = {11}, journal = {Frontiers in Behavioral Neuroscience}, number = {226}, doi = {10.3389/fnbeh.2017.00226}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159235}, year = {2017}, abstract = {Central place foragers are faced with the challenge to learn the position of their nest entrance in its surroundings, in order to find their way back home every time they go out to search for food. To acquire navigational information at the beginning of their foraging career, Cataglyphis noda performs learning walks during the transition from interior worker to forager. These small loops around the nest entrance are repeatedly interrupted by strikingly accurate back turns during which the ants stop and precisely gaze back to the nest entrance—presumably to learn the landmark panorama of the nest surroundings. However, as at this point the complete navigational toolkit is not yet available, the ants are in need of a reference system for the compass component of the path integrator to align their nest entrance-directed gazes. In order to find this directional reference system, we systematically manipulated the skylight information received by ants during learning walks in their natural habitat, as it has been previously suggested that the celestial compass, as part of the path integrator, might provide such a reference system. High-speed video analyses of distinct learning walk elements revealed that even exclusion from the skylight polarization pattern, UV-light spectrum and the position of the sun did not alter the accuracy of the look back to the nest behavior. We therefore conclude that C. noda uses a different reference system to initially align their gaze directions. However, a comparison of neuroanatomical changes in the central complex and the mushroom bodies before and after learning walks revealed that exposure to UV light together with a naturally changing polarization pattern was essential to induce neuroplasticity in these high-order sensory integration centers of the ant brain. This suggests a crucial role of celestial information, in particular a changing polarization pattern, in initially calibrating the celestial compass system.}, language = {en} } @article{BahnikStuchlik2015, author = {Bahn{\´i}k, Štěp{\´a}n and Stuchl{\´i}k, Aleš}, title = {Temporal and spatial strategies in an active place avoidance task on Carousel: a study of effects of stability of arena rotation speed in rats}, series = {PeerJ}, volume = {3}, journal = {PeerJ}, number = {e1257}, doi = {10.7717/peerj.1257}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141931}, year = {2015}, abstract = {The active place avoidance task is a dry-arena task used to assess spatial navigation and memory in rodents. In this task, a subject is put on a rotating circular arena and avoids an invisible sector that is stable in relation to the room. Rotation of the arena means that the subject's avoidancemust be active, otherwise the subject will be moved in the to-be-avoided sector by the rotation of the arena and a slight electric shock will be administered. The present experiment explored the effect of variable arena rotation speed on the ability to avoid the to-be-avoided sector. Subjects in a group with variable arena rotation speed learned to avoid the sector with the same speed and attained the same avoidance ability as rats in a group with a stable arena rotation speed. Only a slight difference in preferred position within the room was found between the two groups. No difference was found between the two groups in the dark phase, where subjects could not use orientation cues in the room. Only one rat was able to learn the avoidance of the to-be-avoided sector in this phase. The results of the experiment suggest that idiothetic orientation and interval timing are not crucial for learning avoidance of the to-be-avoided sector. However, idiothetic orientation might be sufficient for avoiding the sector in the dark.}, language = {en} } @article{SchneiderTautzGruenewaldetal.2012, author = {Schneider, Christof W. and Tautz, J{\"u}rgen and Gr{\"u}newald, Bernd and Fuchs, Stefan}, title = {RFID Tracking of Sublethal Effects of Two Neonicotinoid Insecticides on the Foraging Behavior of Apis mellifera}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {1}, doi = {10.1371/journal.pone.0030023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131753}, pages = {e30023}, year = {2012}, abstract = {The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the animal's vitality and behavioral performance. Several methods have been used to detect sublethal effects of different insecticides under laboratory conditions using olfactory conditioning. Furthermore, studies have been conducted on the influence insecticides have on foraging activity and homing ability which require time-consuming visual observation. We tested an experimental design using the radiofrequency identification (RFID) method to monitor the influence of sublethal doses of insecticides on individual honeybee foragers on an automated basis. With electronic readers positioned at the hive entrance and at an artificial food source, we obtained quantifiable data on honeybee foraging behavior. This enabled us to efficiently retrieve detailed information on flight parameters. We compared several groups of bees, fed simultaneously with different dosages of a tested substance. With this experimental approach we monitored the acute effects of sublethal doses of the neonicotinoids imidacloprid (0.15-6 ng/bee) and clothianidin (0.05-2 ng/bee) under field-like circumstances. At field-relevant doses for nectar and pollen no adverse effects were observed for either substance. Both substances led to a significant reduction of foraging activity and to longer foraging flights at doses of >= 0.5 ng/bee (clothianidin) and >= 1.5 ng/bee (imidacloprid) during the first three hours after treatment. This study demonstrates that the RFID-method is an effective way to record short-term alterations in foraging activity after insecticides have been administered once, orally, to individual bees. We contribute further information on the understanding of how honeybees are affected by sublethal doses of insecticides.}, language = {en} } @article{BingShiTanKressCastroetal.2013, author = {Bing-Shi Tan, Ariel and Kress, Sebastian and Castro, Leticia and Sheppard, Allan and Raghunath, Michael}, title = {Cellular re- and de-programming by microenvironmental memory: why short TGF-β1 pulses can have long effects}, series = {Fibrogenesis Tissue Repair}, volume = {6}, journal = {Fibrogenesis Tissue Repair}, number = {12}, doi = {10.1186/1755-1536-6-12}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131898}, year = {2013}, abstract = {Background Fibrosis poses a substantial setback in regenerative medicine. Histopathologically, fibrosis is an excessive accumulation of collagen affected by myofibroblasts and this can occur in any tissue that is exposed to chronic injury or insult. Transforming growth factor (TGF)-β1, a crucial mediator of fibrosis, drives differentiation of fibroblasts into myofibroblasts. These cells exhibit α-smooth muscle actin (α-SMA) and synthesize high amounts of collagen I, the major extracellular matrix (ECM) component of fibrosis. While hormones stimulate cells in a pulsatile manner, little is known about cellular response kinetics upon growth factor impact. We therefore studied the effects of short TGF-β1 pulses in terms of the induction and maintenance of the myofibroblast phenotype. Results Twenty-four hours after a single 30 min TGF-β1 pulse, transcription of fibrogenic genes was upregulated, but subsided 7 days later. In parallel, collagen I secretion rate and α-SMA presence were elevated for 7 days. A second pulse 24 h later extended the duration of effects to 14 days. We could not establish epigenetic changes on fibrogenic target genes to explain the long-lasting effects. However, ECM deposited under singly pulsed TGF-β1 was able to induce myofibroblast features in previously untreated fibroblasts. Dependent on the age of the ECM (1 day versus 7 days' formation time), this property was diminished. Vice versa, myofibroblasts were cultured on fibroblast ECM and cells observed to express reduced (in comparison with myofibroblasts) levels of collagen I. Conclusions We demonstrated that short TGF-β1 pulses can exert long-lasting effects on fibroblasts by changing their microenvironment, thus leaving an imprint and creating a reciprocal feed-back loop. Therefore, the ECM might act as mid-term memory for pathobiochemical events. We would expect this microenvironmental memory to be dependent on matrix turnover and, as such, to be erasable. Our findings contribute to the current understanding of fibroblast induction and maintenance, and have bearing on the development of antifibrotic drugs.}, language = {en} } @article{ChenGerber2014, author = {Chen, Yi-chun and Gerber, Bertram}, title = {Generalization and discrimination tasks yield concordant measures of perceived distance between odours and their binary mixtures in larval Drosophila}, series = {The Journal of Experimental Biology}, volume = {217}, journal = {The Journal of Experimental Biology}, number = {12}, doi = {10.1242/jeb.100966}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121625}, pages = {2071-7}, year = {2014}, abstract = {Similarity between odours is notoriously difficult to measure. Widely used behavioural approaches in insect olfaction research are cross-adaptation, masking, as well as associative tasks based on olfactory learning and the subsequent testing for how specific the established memory is. A concern with such memory-based approaches is that the learning process required to establish an odour memory may alter the way the odour is processed, such that measures of perception taken at the test are distorted. The present study was therefore designed to see whether behavioural judgements of perceptual distance are different for two different memory-based tasks, namely generalization and discrimination. We used odour-reward learning in larval Drosophila as a study case. In order to challenge the larvae's olfactory system, we chose to work with binary mixtures and their elements (1-octanol, n-amyl acetate, 3-octanol, benzaldehyde and hexyl acetate). We determined the perceptual distance between each mixture and its elements, first in a generalization task, and then in a discrimination task. It turns out that scores of perceptual distance are correlated between both tasks. A re-analysis of published studies looking at element-to-element perceptual distances in larval reward learning and in adult punishment learning confirms this result. We therefore suggest that across a given set of olfactory stimuli, associative training does not grossly alter the pattern of perceptual distances.}, language = {en} } @article{LichtensteinSommerlandtSpaethe2015, author = {Lichtenstein, Leonie and Sommerlandt, Frank M. J. and Spaethe, Johannes}, title = {Dumb and Lazy? A Comparison of Color Learning and Memory Retrieval in Drones and Workers of the Buff-Tailed Bumblebee, Bombus terrestris, by Means of PER Conditioning}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {7}, doi = {10.1371/journal.pone.0134248}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125832}, pages = {e0134248}, year = {2015}, abstract = {More than 100 years ago, Karl von Frisch showed that honeybee workers learn and discriminate colors. Since then, many studies confirmed the color learning capabilities of females from various hymenopteran species. Yet, little is known about visual learning and memory in males despite the fact that in most bee species males must take care of their own needs and must find rewarding flowers to obtain food. Here we used the proboscis extension response (PER) paradigm to study the color learning capacities of workers and drones of the bumblebee, Bombus terrestris. Light stimuli were paired with sucrose reward delivered to the insects' antennae and inducing a reflexive extension of the proboscis. We evaluated color learning (i.e. conditioned PER to color stimuli) in absolute and differential conditioning protocols and mid-term memory retention was measured two hours after conditioning. Different monochromatic light stimuli in combination with neutral density filters were used to ensure that the bumblebees could only use chromatic and not achromatic (e.g. brightness) information. Furthermore, we tested if bees were able to transfer the learned information from the PER conditioning to a novel discrimination task in a Y-maze. Both workers and drones were capable of learning and discriminating between monochromatic light stimuli and retrieved the learned stimulus after two hours. Drones performed as well as workers during conditioning and in the memory test, but failed in the transfer test in contrast to workers. Our data clearly show that bumblebees can learn to associate a color stimulus with a sugar reward in PER conditioning and that both workers and drones reach similar acquisition and mid-term retention performances. Additionally, we provide evidence that only workers transfer the learned information from a Pavlovian to an operant situation.}, language = {en} } @article{PahlSiZhang2013, author = {Pahl, Mario and Si, Aung and Zhang, Shaowu}, title = {Numerical cognition in bees and other insects}, series = {Frontiers in Comparative Psychology}, journal = {Frontiers in Comparative Psychology}, doi = {10.3389/fpsyg.2013.00162}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-95935}, year = {2013}, abstract = {The ability to perceive the number of objects has been known to exist in vertebrates for a few decades, but recent behavioral investigations have demonstrated that several invertebrate species can also be placed on the continuum of numerical abilities shared with birds, mammals, and reptiles. In this review article, we present the main experimental studies that have examined the ability of insects to use numerical information. These studies have made use of a wide range of methodologies, and for this reason it is striking that a common finding is the inability of the tested animals to discriminate numerical quantities greater than four. Furthermore, the finding that bees can not only transfer learnt numerical discrimination to novel objects, but also to novel numerosities, is strongly suggestive of a true, albeit limited, ability to count. Later in the review, we evaluate the available evidence to narrow down the possible mechanisms that the animals might be using to solve the number-based experimental tasks presented to them. We conclude by suggesting avenues of further research that take into account variables such as the animals' age and experience, as well as complementary cognitive systems such as attention and the time sense.}, subject = {Biene}, language = {en} } @phdthesis{Niewalda2010, author = {Niewalda, Thomas}, title = {Neurogenetic analyses of pain-relief learning in the fruit fly}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65035}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {All animals learn in order to cope with challenges imposed on them by their environment. This is true also for both larval and adult fruit flies as exemplified in pavlovian conditioning. The focus of this Thesis is on various aspects of the fruit flies learning ability. My main project deals with two types of learning which we call punishment-learning and pain-relief learning. Punishment learning happens when fruit flies are exposed to an odour which is followed by electric shock. After such training, flies have learned that that odour signals pain and consequently will avoid it in the future. If the sequence of the two stimuli is reversed such that odour follows shock, flies learn the odour as a signal for relief and will later on approach it. I first report a series of experiments investigating qualitative and parametric features of relief-learning; I find that (i) relief learning does result from true associative conditioning, (ii) it requires a relatively high number of training trials, (iii) context-shock training is ineffective for subsequent shock-odour learning. A further question is whether punishment-learning and pain-relief learning share genetic determinants. In terms of genetics, I test a synapsin mutant strain, which lacks all Synapsin protein, in punishment and relief-learning. Punishment learning is significantly reduced, and relief-learning is abolished. Pan-neuronal RNAi-mediated knock-down of Synapsin results in mutant-like phenotypes, confirming the attribution of the phenotype to lack of Synapsin. Also, a rescue of Synapsin in the mushroom body of syn97 mutants restores both punishment- and relief-learning fully, suggesting the sufficiency of Synapsin in the mushroom body for both these kinds of learning. I also elucidate the relationship between perception and physiology in adult fruit flies. I use odour-shock conditioning experiments to identify degrees of similarity between odours; I find that those similarity measures are consistent across generalization and discrimination tasks of diverse difficulty. Then, as collaborator of T. V{\"o}ller and A. Fiala, I investigate how such behavioural similarity/dissimilarity is reflected at the physiological level. I combine the behaviour data with calcium imaging data obtained by measuring the activity patterns of those odours in either the sensory neurons or the projection neurons at the antennal lobe. Our interpretation of the results is that the odours perceptual similarity is organized by antennal lobe interneurons. In another project I investigate the effect of gustatory stimuli on reflexive behaviour as well as their role as reinforcer in larval learning. Drosophila larvae greatly alter their behaviour in presence of sodium chloride. Increasing salt concentration modulates choice behaviour from weakly appetitive to strongly aversive. A similar concentration-behaviour function is also found for feeding: larval feeding is slightly enhanced in presence of low salt concentrations, and strongly decreased in the presence of high salt concentrations. Regarding learning, relatively weak salt concentrations function as appetitive reinforcer, whereas high salt concentrations function as aversive reinforcer. Interestingly, the behaviour-concentration curves are shifted towards higher concentrations from reflexive behaviour (choice behaviour, feeding) as compared to associative learning. This dissociation may reflect a different sensitivity in the respective sensory-motor circuitry.}, subject = {Taufliege}, language = {en} } @phdthesis{Pappert2007, author = {Pappert, Katrin}, title = {Anisotropies in (Ga,Mn)As - Measurement, Control and Application in Novel Devices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23370}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Ferromagnetic semiconductors (FS) promise the integration of magnetic memory functionalities and semiconductor information processing into the same material system. The prototypical FS (Ga,Mn)As has become the focus of semiconductor spintronics research over the past years. The spin-orbit mediated coupling of magnetic and semiconductor properties in this material gives rise to many novel transport-related phenomena which can be harnessed for device applications. In this thesis we address challenges faced in the development of an all-semiconductor memory architecture. A starting point for information storage in FS is the knowledge of their detailed magnetic anisotropy. The first part of this thesis concentrates on the investigation of the magnetization behaviour in compressively strained (Ga,Mn)As by electrical means. The angle between current and magnetization is monitored in magnetoresistance(MR) measurements along many in-plane directions using the Anisotropic MR(AMR) or Planar Hall effect(PHE). It is shown, that a full angular set of such measurements displayed in a color coded resistance polar plot can be used to identify and quantitatively determine the symmetry components of the magnetic anisotropy of (Ga,Mn)As at 4 K. We compile such "anisotropy fingerprints" for many (Ga,Mn)As layers from Wuerzburg and other laboratories and find the presence of three symmetry terms in all layers. The biaxial anisotropy term with easy axes along the [100] and [010] crystal direction dominates the magnetic behaviour. An additional uniaxial term with an anisotropy constant of ~10\% of the biaxial one has its easy axis along either of the two <110> directions. A second contribution of uniaxial symmetry with easy axis along one of the biaxial easy axes has a strength of only ~1\% of the biaxial anisotropy and is therefore barely visible in standard SQUID measurements. An all-electrical writing scheme would be desirable for commercialization. We report on a current assisted magnetization manipulation experiment in a lateral (Ga,Mn)As nanodevice at 4 K (far below Tc). Reading out the large resistance signal from DW that are confined in nanoconstrictions, we demonstrate the current assisted magnetization switching of a small central island through a hole mediated spin transfer from the adjacent leads. One possible non-perturbative read-out scheme for FS memory devices could be the recently discovered Tunneling Anisotropic MagnetoResistance (TAMR) effect. Here we clarify the origin of the large amplification of the TAMR amplitude in a device with an epitaxial GaAs tunnel barrier at low temperatures. We prove with the help of density of states spectroscopy that a thin (Ga,Mn)As injector layer undergoes a metal insulator transition upon a change of the magnetization direction in the layer plane. The two states can be distinguished by their typical power law behaviour in the measured conductance vs voltage tunneling spectra. While all hereto demonstrated (Ga,Mn)As devices inherited their anisotropic magnetic properties from their parent FS layer, more sophisticated FS architectures will require locally defined FS elements of different magnetic anisotropy on the same wafer. We show that shape anisotropy is not applicable in FS because of their low volume magnetization. We present a method to lithographically engineer the magnetic anisotropy of (Ga,Mn)As by submicron patterning. Anisotropic strain relaxation in submicron bar structures (nanobars) and the related deformation of the crystal lattice introduce a new uniaxial anisotropy term in the energy equation. We demonstrate by both SQUID and transport investigations that this lithographically induced uniaxial anisotropy overwrites the intrinsic biaxial anisotropy at all temperatures up to Tc. The final section of the thesis combines all the above into a novel device scheme. We use anisotropy engineering to fabricate two orthogonal, magnetically uniaxial, nanobars which are electrically connected through a constriction. We find that the constriction resistance depends on the relative orientation of the nanobar magnetizations, which can be written by an in-plane magnetic field. This effect can be explained with the AMR effect in connection with the field line patterns in the respective states. The device offers a novel non-volatile information storage scheme and a corresponding non-perturbative read-out method. The read out signal is shown to increase drastically in samples with partly depleted constriction region. This could be shown to originate in a magnetization direction driven metal insulator transition of the material in the constriction region.}, subject = {Anisotropie}, language = {en} } @phdthesis{Schliemann2004, author = {Schliemann, Andreas Ulrich}, title = {Untersuchung von miniaturisierten GaAs/AlGaAs Feldeffekttransistoren und GaAs/InGaAs/AlGaAs Flash-Speichern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-20503}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Im Rahmen dieser Arbeit wurden elektronische Bauelemente wie Feldeffekttransistoren, elektronische Speicherelemente sowie resonante Tunneldioden hinsichtlich neuartiger Transporteigenschaften untersucht, die ihren Ursprung in der Miniaturisierung mit Ausdehnungen kleiner als charakteristische Streul{\"a}ngen haben. Die Motivation der vorliegenden Arbeit lag darin, die Physik nanoelektronischer Bauelemente durch einen neuen Computercode: NANOTCAD nicht nur qualitativ sondern auch quantitativ beschreiben zu k{\"o}nnen. Der besondere Schwerpunkt der Transportuntersuchungen lag im nicht-linearen Transportbereich f{\"u}r Vorw{\"a}rtsspannungen, bei denen die Differenz der elektrochemischen Potentiale im aktiven Bereich der Bauelemente bei Weitem gr{\"o}ßer als die thermische Energie der Ladungstr{\"a}ger ist, da nur im nicht-linearen Transportbereich die f{\"u}r eine Anwendung elektronischer Bauelemente notwendige Gleichrichtung und Verst{\"a}rkung auftreten kann. Hierzu war es notwendig, eine detaillierte Charakterisierung der Bauelemente durchzuf{\"u}hren, damit m{\"o}glichst viele Parameter zur genauen Modellierung zur Verf{\"u}gung standen. Als Ausgangsmaterial wurden modulationsdotierte GaAs/AlGaAs Heterostrukturen gew{\"a}hlt, da sie in hervorragender struktureller G{\"u}te mit Hilfe der Molekularstrahllithographie am Lehrstuhl f{\"u}r Technische Physik mit angegliedertem Mikrostrukturlabor hergestellt werden k{\"o}nnen. Im Rahmen dieser Arbeit wurde zun{\"a}chst ein Verfahren zur Bestimmung der Oberfl{\"a}chenenergie entwickelt und durchgef{\"u}hrt, das darauf beruht, die Elektronendichte eines nahe der Oberfl{\"a}che befindlichen Elektronengases in Abh{\"a}ngigkeit unterschiedlicher Oberfl{\"a}chenschichtdicken zu bestimmen. Es zeigte sich, dass die so bestimmte Oberfl{\"a}chenenergie, einen {\"a}ußerst empfindlichen Parameter zur Beschreibung miniaturisierter Bauelemente darstellt. Um die miniaturisierte Bauelemente zu realisieren, kamen Herstellungsverfahren der Nanostrukturtechnik wie Elektronenstrahllithographie und diverse {\"A}tztechniken zum Einsatz. Durch Elektronmikroskopie wurde die Geometrie der nanostrukturierten Bauelemente genau charakterisiert. Transportmessungen wurden durchgef{\"u}hrt, um die Eingangs- und Ausgangskennlinien zu bestimmen, wobei die Temperatur zwischen 1K und Raumtemperatur variiert wurde. Die temperaturabh{\"a}ngigen Analysen erlaubten es, die Rolle inelastischer Streuereignisse im Bereich des quasi-ballistischen Transports zu analysieren. Die Ergebnisse dieser Arbeit wurden dazu verwendet, um die NANOTCAD Simulationswerkzeuge soweit zu optimieren, dass quantitative Beschreibungen von stark miniaturisierten, elektronischen Bauelementen durch einen iterativen L{\"o}sungsalgorithmus der Schr{\"o}dingergleichung und der Poissongleichung in drei Raumdimensionen m{\"o}glich sind. Zu Beginn der Arbeit wurden auf der Basis von modulationsdotierten GaAs/AlGaAs Heterostrukturen eine Vielzahl von Quantenpunktkontakten, die durch Verarmung eines zweidimensionalen Elektronengases durch spitz zulaufende Elektrodenstrukturen realisiert wurden, untersucht. Variationen der Splitgate-Geometrien wurden statistisch erfasst und mit NanoTCADSimulationen verglichen. Es konnte ein hervorragende {\"U}bereinstimmung in der Schwellwertcharakteristik von Quantenpunktkontakten und Quantenpunkten gefunden werden, die auf der genauen Beschreibung der Oberfl{\"a}chenzust{\"a}nde und der Erfassung der realen Geometrie beruhen. Ausgehend von diesen Grundcharakterisierungen nanoelektronischer Bauelemente wurden 3 Klassen von Bauelementen auf der Basis des GaAs/AlGaAs Halbleitersystems detailliert analysiert.}, subject = {Galliumarsenid}, language = {de} } @phdthesis{Thum2006, author = {Thum, Andreas Stephan}, title = {Sugar reward learning in Drosophila : neuronal circuits in Drosophila associative olfactory learning}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17930}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Genetic intervention in the fly Drosophila melanogaster has provided strong evidence that the mushroom bodies of the insect brain act as the seat of memory traces for aversive and appetitive olfactory learning (reviewed in Heisenberg, 2003). In flies, electroshock is mainly used as negative reinforcer. Unfortunately this fact complicates a comparative consideration with other inscets as most studies use sugar as positive reinforcer. For example, several lines of evidence from honeybee and moth have suggested another site, the antennal lobe, to house neuronal plasticity underlying appetitive olfactory memory (reviewed in Menzel, 2001; Daly et al., 2004). Because of this I focused my work mainly on appetitive olfactory learning. In the first part of my thesis, I used a novel genetic tool, the TARGET system (McGuire et al., 2003), which allows the temporally controlled expression of a given effector gene in a defined set of cells. Comparing effector genes which either block neurotransmission or ablate cells showed important differences, revealing that selection of the appropriate effector gene is critical for evaluating the function of neural circuits. In the second part, a new engram of olfactory memory in the Drosophila projection neurons is described by restoring Rutabaga adenlylate cyclase (rut-AC) activity specifically in these cells. Expression of wild-type rutabaga in the projection neurons fully rescued the defect in sugar reward memory, but not in aversive electric shock memory. No difference was found in the stability of the appetitive memories rescued either in projection neurons or Kenyon cells. In the third part of the thesis I tried to understand how the reinforcing signals for sugar reward are internally represented. In the bee Hammer (1993) described a single octopaminergic neuron - called VUMmx1 - that mediates the sugar stimulus in associative olfactory reward learning. Analysis of single VUM neurons in the fly (Selcho, 2006) identified a neuron with a similar morphology as the VUMmx1 neuron. As there is a mutant in Drosophila lacking the last enzymatic step in octopamine synthesis (Monastirioti et al., 1996), Tyramine beta Hydroxylase, I was able to show that local Tyramine beta Hydroxylase expression successfully rescued sugar reward learning. This allows to conclude that about 250 cells including the VUM cluster are sufficient for mediating the sugar reinforcement signal in the fly. The description of a VUMmx1 similar neuron and the involvement of the VUM cluster in mediating the octopaminergic sugar stimulus are the first steps in establishing a neuronal map for US processing in Drosophila. Based on this work several experiments are contrivable to reach this ultimate goal in the fly. Taken together, the described similiarities between Drosophila and honeybee regarding the memory organisation in MBs and PNs and the proposed internal representation of the sugar reward suggest an evolutionarily conserved mechanism for appetitive olfactory learning in insects.}, subject = {Taufliege}, language = {en} } @phdthesis{Masek2005, author = {Masek, Pavel}, title = {Odor intensity learning in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15546}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {It has been known for a long time that Drosophila can learn to discriminate not only between different odorants but also between different concentrations of the same odor. Olfactory associative learning has been described as a pairing between odorant and electric shock and since then, most of the experiments conducted in this respect have largely neglected the dual properties of odors: quality and intensity. For odorant-coupled short-term memory, a biochemical model has been proposed that mainly relies on the known cAMP signaling pathway. Mushroom bodies (MB) have been shown to be necessary and sufficient for this type of memory, and the MB-model of odor learning and short-term memory was established. Yet, theoretically, based on the MB-model, flies should not be able to learn concentrations if trained to the lower of the two concentrations in the test. In this thesis, I investigate the role of concentration-dependent learning, establishment of a concentration-dependent memory and their correlation to the standard two-odor learning as described by the MB-model. In order to highlight the difference between learning of quality and learning of intensity of the same odor I have tried to characterize the nature of the stimulus that is actually learned by the flies, leading to the conclusion that during the training flies learn all possible cues that are presented at the time. The type of the following test seems to govern the usage of the information available. This revealed a distinction between what flies learned and what is actually measured. Furthermore, I have shown that learning of concentration is associative and that it is symmetrical between high and low concentrations. I have also shown how the subjective quality perception of an odor changes with changing intensity, suggesting that one odor can have more than one scent. There is no proof that flies perceive a range of concentrations of one odorant as one (odor) quality. Flies display a certain level of concentration invariance that is limited and related to the particular concentration. Learning of concentration is relevant only to a limited range of concentrations within the boundaries of concentration invariance. Moreover, under certain conditions, two chemically distinct odorants could smell sufficiently similarly such, that they can be generalized between each other like if they would be of the same quality. Therefore, the abilities of the fly to identify the difference in quality or in intensity of the stimuli need to be distinguished. The way how the stimulus is analyzed and processed speaks in favor of a concept postulating the existence of two separated memories. To follow this concept, I have proposed a new form of memory called odor intensity memory (OIM), characterized it and compared it to other olfactory memories. OIM is independent of some members of the known cAMP signaling pathway and very likely forms the rutabaga-independent component of the standard two-odor memory. The rutabaga-dependent odor memory requires qualitatively different olfactory stimuli. OIM is revealed within the limits of concentration invariance where the memory test gives only sub-optimal performance for the concentration differences but discrimination of odor quality is not possible at all. Based on the available experimental tools, OIM seems to require the mushroom bodies the same as odor-quality memory but its properties are different. Flies can memorize the quality of several odorants at a given time but a newly formed memory of one odor interferes with the OIM stored before. In addition, the OIM lasts only 1 to 3 hours - much shorter than the odor-quality memory.}, subject = {Taufliege}, language = {en} } @phdthesis{Bennetz2004, author = {Bennetz, Maike}, title = {Auff{\"a}lligkeiten in Ged{\"a}chtnisfunktionen bei Kindern mit Lese-Rechtschreibschw{\"a}che}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10941}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Ziel der Studie war die Exploration von Funktionen des Kurzzeitged{\"a}chtnisses bei lese-rechtschreibschwachen Kindern (LRS) im Vergleich zu einer schriftsprachlich normal entwickelten Kontrollgruppe (KG). Ged{\"a}chtnisfunktionen sollten im Hinblick auf Entwicklungsver{\"a}nderungen {\"u}ber eine Altersspanne von acht bis dreizehn Jahren untersucht werden. Bei einem m{\"o}glichen Ged{\"a}chtnisdefizit sollte {\"u}berpr{\"u}ft werden, ob dieses sich nur bei schriftsprach{\"a}hnlichem Material {\"a}ußerte oder ob es sich um ein allgemeineres Defizit handelte. Insgesamt 65 lese-rechtschreibschwache und schriftsprachlich normal entwickelte Kinder der Altersgruppen 8-9 Jahre, 10-11 Jahre und 12-13 Jahre wurden Aufgaben zur Ged{\"a}chtnisspanne, zur Benennungsgeschwindigkeit und zur Suchrate unterzogen. In den Aufgaben zur Ged{\"a}chtnisspanne und zur Benennungsgeschwindigkeit zeigten die lese-rechtschreibschwachen Kinder deutlich schlechtere Leistungen als die Kontrollgruppe, und beide untersuchten Gruppen verbesserten sich in ihren Leistungen mit ansteigendem Alter. Hinweise f{\"u}r ein schriftsprachorientiertes Defizit im Falle der Rechtschreibschwachen ließen sich den Aufgaben zur Ged{\"a}chtnisspanne und zur Suchrate entnehmen. Zusammenfassend best{\"a}tigen die vorliegenden Ergebnisse Defizite in Funktionen des Kurzzeitged{\"a}chtnisses bei LRS. {\"U}ber die untersuchte Altersspanne hinweg kam es nicht zu einer Ann{\"a}herung der Leistungen der Rechtschreibschwachen an die der Kontrollgruppe, was f{\"u}r ein bleibendes Defizit im Fall der LRS spricht. Um zu eindeutigen Ergebnissen hinsichtlich der Schriftsprachabh{\"a}ngigkeit der Ged{\"a}chtnisdefizite bei LRS kommen zu k{\"o}nnen, m{\"u}ssen weitere Studien abgewartet werden.}, language = {de} } @phdthesis{Fischer2004, author = {Fischer, Matthias}, title = {Lokalisierung eines Ged{\"a}chtnisses bei Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8050}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Es konnte in dieser Arbeit gezeigt werden, daß das olfaktorische Kurzzeitged{\"a}chtnis von Drosophila melanogaster in den Pilzk{\"o}rpern lokalisiert ist. Zu Beginn dieser Doktorarbeit war bekannt, daß die Pilzk{\"o}rper notwendig f{\"u}r das Geruchsged{\"a}chtnis sind. Drei unabh{\"a}ngige Methoden der Ablation bzw. Ver{\"a}nderung der biochemischen Eigenschaften der Pilzk{\"o}rper hatten zu dem selben Ergebnis gef{\"u}hrt, daß funktionierende Pilzk{\"o}rper unentbehrlich f{\"u}r den Aufbau eines Geruchsged{\"a}chtnisses sind. Noch informativer als ein Experiment, in dem durch Zerst{\"o}rung einer Struktur eine Leistung unm{\"o}glich gemacht wird ist der umgekehrte Weg, der durch einen gewebespezifischen „rescue" die Leistung wiederherstellt. Dazu wurde in dieser Arbeit das wildtypische Allel des Gens rutabaga in rut-mutanten Fliegen mit Hilfe des Gal4/UAS-Systems ausschließlich in den Pilzk{\"o}rpern, bzw., im Gegenexperiment, nur außerhalb der Pilzk{\"o}rper zur Expression gebracht. rut kodiert f{\"u}r die Adenylatcyclase I, die mit synaptischer Plastizit{\"a}t bei Drosophila, Aplysia und M{\"a}usen in Verbindung gebracht wird. Man geht davon aus, daß synaptische Plastizit{\"a}t die molekulare Grundlage f{\"u}r Lernen und Ged{\"a}chtnis ist. Die AC I stellt cAMP her, dessen Menge und pr{\"a}zise Regulation die {\"U}bertragungsst{\"a}rke an Neuronen beeinflußt. Eine St{\"o}rung dieses Signalweges z. B. durch die rut-Mutation f{\"u}hrt zu einer Beeintr{\"a}chtigung des Ged{\"a}chtnisses bei Drosophila. rut wurde mit Hilfe des in Drosophila etablierten Gal4/UAS-Systems exprimiert: Der gewebespezifisch aktive Hefe-Transkriptionsfaktor Gal4 f{\"u}hrt dazu, daß das hinter einen Gal4-spezifischen UAS-Promotor klonierte wildtypische rut-Gen in denjenigen Zellen transkribiert wird, in denen der Transkriptionsfaktor vorhanden ist. Dies wurde in einer rut-Mutante durchgef{\"u}hrt, so daß in allen anderen Zellen keine funktionierende AC I vorhanden war. Die rut-abh{\"a}ngige synaptische Plastizit{\"a}t wurde damit ausschließlich auf die gew{\"u}nschten Regionen beschr{\"a}nkt. Das Expressionsmuster der Gal4-Linien wurde durch Immuncytochemie (Anti-Tau) sichtbar gemacht. Diese Fliegen wurden in einem klassischen Konditionierungsexperiment auf ihr Geruchs-Ged{\"a}chtnis untersucht. Dazu wurden einer Gruppe von Fliegen nacheinander 2 Ger{\"u}che pr{\"a}sentiert, von denen einer mit Elektroschocks gepaart war. Nach ca. 2 min konnten diese Fliegen sich f{\"u}r einen der beiden Ger{\"u}che entscheiden, die nun gleichzeitig aus 2 unterschiedlichen Richtungen dargeboten wurden. Je nach Lernleistung entschieden sich mehr oder weniger Fliegen f{\"u}r den vorher unbestraften Geruch. Es ergab sich, daß der Ort im Gehirn, an dem die wildtypische AC I exprimiert wurde, {\"u}ber die H{\"o}he des Ged{\"a}chtniswertes entschied: Die AC I ausschließlich in den Pilzk{\"o}rpern gew{\"a}hrte ein v{\"o}llig normales Ged{\"a}chtnis, wogegen die AC I außerhalb der Pilzk{\"o}rper das Ged{\"a}chtnis nicht gegen{\"u}ber der rut-Mutante verbessern konnte. Die Analyse der Expressionsverteilung von insgesamt 9 getesteten Fliegenlinien mißt {\"u}berdies dem \&\#61543;-Lobus des Pilzk{\"o}rpers eine besondere Bedeutung bei und l{\"a}ßt den Schluß zu, daß das hier untersuchte Ged{\"a}chtnis ausschließlich in den \&\#61543;-Loben lokalisiert ist. Dieses erfolgreiche rut-„rescue" - Experiment zeigt, daß rut-abh{\"a}ngige synaptische Plastizit{\"a}t ausschließlich in den Pilzk{\"o}rpern ausreichend f{\"u}r ein wildtypisches Ged{\"a}chtnis ist. Dieses Ergebnis vervollst{\"a}ndigt die Erkenntnisse von den Pilzk{\"o}rper-Ablationsexperimenten insofern, als nun die Aussage zutrifft, daß die Pilzk{\"o}rper notwendig und hinreichend f{\"u}r das olfaktorische Kurzzeitged{\"a}chtnis sind.}, language = {de} }