@article{BankogluArnoldHeringetal.2018, author = {Bankoglu, Ezgi Eyluel and Arnold, Charlotte and Hering, Ilona and Hankir, Mohammed and Seyfried, Florian and Stopper, Helga}, title = {Decreased chromosomal damage in lymphocytes of obese patients after bariatric surgery}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {11195}, doi = {10.1038/s41598-018-29581-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177090}, year = {2018}, abstract = {The number of bariatric surgeries being performed worldwide has markedly risen. While the improvement in obesity-associated comorbidities after bariatric surgery is well-established, very little is known about its impact on cancer risk. The peripheral lymphocyte micronucleus test is a widely used method for the monitoring of chromosomal damage levels in vivo, and micronucleus frequency positively correlates with cancer risk. Therefore, the aim of this study was to compare the micronucleus frequency before and after bariatric surgery in obese subjects. Peripheral blood mononuclear cells were collected from 45 obese subjects before and at two time-points after bariatric surgery (6 and 12 months) to assess spontaneous micronucleus frequency. Consistent with the increased cancer risk previously shown, bariatric surgery-induced weight loss led to a significant reduction in lymphocyte micronucleus frequency after 12 months. Interestingly, comorbidities such as type 2 diabetes mellitus and metabolic syndrome further seemed to have an impact on the lymphocyte micronucleus frequency. Our findings may indicate a successful reduction of cancer risk in patients following weight loss caused by bariatric surgery.}, language = {en} } @article{HintzscheMontagStopper2018, author = {Hintzsche, Henning and Montag, Gracia and Stopper, Helga}, title = {Induction of micronuclei by four cytostatic compounds in human hematopoietic stem cells and human lymphoblastoid TK6 cells}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {3371}, doi = {10.1038/s41598-018-21680-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176210}, year = {2018}, abstract = {For mutagenicity testing, primary lymphocytes or mammalian cell lines are employed. However, the true target for carcinogenic action of mutagenic chemicals may be stem cells. Since hematopoietic cancers induced by chemical agents originate at the hematopoietic stem cell (HSC) stage and since one of the side effects of chemotherapeutic cancer treatment is the induction of secondary tumors, often leukemias, HSC may be a suitable cell system. We compared the sensitivity of HSC with the genotoxicity testing cell line TK6 for chromosomal mutations. HSC were less sensitive than TK6 cells for the genotoxic effects of the model genotoxins and chemotherapeutic agents doxorubicin, vinblastine, methyl methanesulfonate (MMS) and equally sensitive for mitomycin C (MMC). However, loss of viability after mitomycin C treatment was higher in HSC than in TK6 cells. Among the factors that may influence sensitivity for genomic damage, the generation or response to reactive oxygen species (ROS) and the effectiveness of DNA damage response can be discussed. Here we show that HSC can be used in a standard micronucleus test protocol for chromosomal mutations and that their sensitivity was not higher than that of a classical testing cell line.}, language = {en} }