@phdthesis{Horn2017, author = {Horn, Hannes}, title = {Analysis and interpretation of (meta-)genomic data from host-associated microorganisms}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152035}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Host-microbe interactions are the key to understand why and how microbes inhabit specific environments. With the scientific fields of microbial genomics and metagenomics, evolving on an unprecedented scale, one is able to gain insights in these interactions on a molecular and ecological level. The goal of this PhD thesis was to make (meta-)genomic data accessible, integrate it in a comparative manner and to gain comprehensive taxonomic and functional insights into bacterial strains and communities derived from two different environments: the phyllosphere of Arabidopsis thaliana and the mesohyl interior of marine sponges. This thesis focused first on the de novo assembly of bacterial genomes. A 5-step protocol was developed, each step including a quality control. The examination of different assembly software in a comparative way identified SPAdes as most suitable. The protocol enables the user to chose the best tailored assembly. Contamination issues were solved by an initial filtering of the data and methods normally used for the binning of metagenomic datasets. This step is missed in many published assembly pipelines. The described protocol offers assemblies of high quality ready for downstream analysis. Subsequently, assemblies generated with the developed protocol were annotated and explored in terms of their function. In a first study, the genome of a phyllosphere bacterium, Williamsia sp. ARP1, was analyzed, offering many adaptions to the leaf habitat: it can deal with temperature shifts, react to oxygen species, produces mycosporins as protection against UV-light, and is able to uptake photosynthates. Further, its taxonomic position within the Actinomycetales was infered from 16S rRNA and comparative genomics showing the close relation between the genera Williamsia and Gordonia. In a second study, six sponge-derived actinomycete genomes were investigated for secondary metabolism. By use of state-of-the-art software, these strains exhibited numerous gene clusters, mostly linked to polykethide synthases, non-ribosomal peptide synthesis, terpenes, fatty acids and saccharides. Subsequent predictions on these clusters offered a great variety of possible produced compounds with antibiotic, antifungal or anti-cancer activity. These analysis highlight the potential for the synthesis of natural products and the use of genomic data as screening toolkit. In a last study, three sponge-derived and one seawater metagenomes were functionally compared. Different signatures regarding the microbial composition and GC-distribution were observed between the two environments. With a focus on bacerial defense systems, the data indicates a pronounced repertoire of sponge associated bacteria for bacterial defense systems, in particular, Clustered Regularly Interspaced Short Palindromic Repeats, restriction modification system, DNA phosphorothioation and phage growth limitation. In addition, characterizing genes for secondary metabolite cluster differed between sponge and seawater microbiomes. Moreover, a variety of Type I polyketide synthases were only found within the sponge microbiomes. With that, metagenomics are shown to be a useful tool for the screening of secondary metabolite genes. Furthermore, enriched defense systems are highlighted as feature of sponge-associated microbes and marks them as a selective trait.}, subject = {Bakterien}, language = {en} } @phdthesis{Reisberg2013, author = {Reisberg, Eva}, title = {Der Einfluss von Trichomen und kutikul{\"a}ren Lipiden auf die bakterielle Besiedelung von Arabidopsis thaliana-Bl{\"a}ttern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83971}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die oberirdischen Oberfl{\"a}chen von Pflanzen sind von komplexen mikrobiellen Konsortien besiedelt deren Zusammensetzung von verschiedenen Faktoren abh{\"a}ngig ist. In der vorliegenden Promotionsarbeit wurden zwei Eigenschaften pflanzlicher Oberfl{\"a}chen auf m{\"o}gliche Auswirkungen auf ihre bakterielle Besiedelung hin untersucht. Dazu wurden Wildtyplinien und Mutanten von Arabidopsis thaliana eingesetzt. Zun{\"a}chst wurde die bakterielle Besiedelung von A. thaliana Wildtyplinien in kultivierungsbasierten Experimenten untersucht. Es wurde hierbei ein {\"U}berblick {\"u}ber die kultivierbare Diversit{\"a}t auf Pflanzen, die unter kontrollierten Bedingungen im Klimaschrank gewachsen waren und Pflanzen, die einen Freilandaufenthalt durchlaufen hatten, gewonnen. Der Einfluss von nicht-dr{\"u}sigen Trichomen von A. thaliana auf die Quantit{\"a}t und Diversit{\"a}t der bakteriellen Besiedelung wurde am A. thaliana Col-0-Wildtyp mit normaler Behaarung und der trichomlosen gl1-Mutante untersucht. Mithilfe von DAPI-F{\"a}rbungen und nachfolgender Zellz{\"a}hlung wurden die bakteriellen Gemeinschaften der beiden Pflanzenlinien quantifiziert. Dabei zeigten sich keine pflanzenlinienspezifischen Unterschiede. Durch die Amplifizierung der bakteriellen 16S rRNA-Gene der Gemeinschaft und den nachfolgenden Einsatz der Denaturierenden Gradientengelelektrophorese (DGGE) wurde ein {\"U}berblick {\"u}ber die Diversit{\"a}t der vorherrschenden Bakteriengruppen gewonnen. Obwohl Trichome als bevorzugte Siedlungspl{\"a}tze von Bakterien gelten, wurden hier auch hinsichtlich der Diversit{\"a}t der bakteriellen Gemeinschaften keine Unterschiede zwischen den untersuchten Pflanzenlinien gefunden. Als weiteres artspezifisches Merkmal von Pflanzenoberfl{\"a}chen wurde die Zusammensetzung der kutikul{\"a}ren Wachse als Einflussfaktor untersucht. Daf{\"u}r wurden vier eceriferum-Mutanten (cer) von A. thaliana in Landsberg erecta (Ler) Wildtyp-Hintergrund eingesetzt, die sich hinsichtlich der kutikul{\"a}ren Wachszusammensetzung ihrer Bl{\"a}tter unterschieden. Zur Untersuchung der Diversit{\"a}t der bakteriellen Besiedelung wurde zun{\"a}chst ein DGGE-Screening durchgef{\"u}hrt. Hier zeigten sich deutliche pflanzenlinienspezifische Unterschiede, die vor allem die Gemeinschaften der cer9- und der cer16-Mutante betrafen. Zur genaueren Charakterisierung der bakteriellen Gemeinschaften der f{\"u}nf Pflanzenlinien wurde die Amplicon-Pyrosequenzierung eingesetzt. Hierbei stellte sich die bakterielle Diversit{\"a}t auf allen Pflanzenlinien entsprechend des Phyllosph{\"a}renhabitats moderat divers und ungleich verteilt dar. Die Identifizierung der sequenzierten Phylotypen ließ eine bakterielle Kerngemeinschaft erkennen. Weiterhin wurden 35 Phylotypen identifiziert, die differenziell auf einzelnen Pflanzenlinien auftraten. Hier handelte es sich um den pflanzenlinienspezifischen Teil der bakteriellen Gemeinschaften. Die statistische Analyse zeigte deutlich divergente Muster f{\"u}r die analysierten Bakteriengemeinschaften der f{\"u}nf Pflanzenlinien. Vor allem die Gemeinschaften der cer6-, cer9- und cer16-Linie konnten in einer UniFrac-basierten Clusteranalyse von den anderen Pflanzenlinien abgegrenzt werden. Diese Ergebnisse zeigen klar, dass die Mutationen in der Wachsbiosynthese zu divergenten bakteriellen Gemeinschaften f{\"u}hrten.}, subject = {Ackerschmalwand}, language = {de} }