@phdthesis{Schallenberg2004, author = {Schallenberg, Timo}, title = {Shadow mask assisted heteroepitaxy of compound semiconductor nanostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10290}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Shadow Mask assisted Molecular Beam Epitaxy (SMMBE) is a technique enabling selected area epitaxy of semiconductor heterostructures through shadow masks. The objective of this work was the development of the SMMBE technique for the reliable fabrication of compound semiconductor nanostructures of high structural and optical quality. In order to accomplish this, technological processes have been developed and optimized. This, in combination with model calculations of the basic kinetic growth processes has enabled the fabrication of high quality quantum structures. A high spatial precision and control of the incidence regions of the molecular beams during the SMMBE process are required for the fabrication of nanostructures. One of the technological developments to this effect, which has substantially enhanced the versatility of SMMBE, is the introduction of a new type of freestanding shadow masks: Growth through such a mask with different incidence angles of the molecular beams is equivalent to employing different mechanical masks, but is much more accurate since the precision of mechanical alignment is limited. A consistent model has been developed, which successfully explains the growth dynamics of molecular beam epitaxy through shadow masks. The redistribution of molecular fluxes under shadow masks may affect the growth rates on selected areas of the substrate drastically. In the case of compound semiconductors, reactions between the constituent species play important roles in controlling the growth rates as a function of the growth parameters. The predictions of the model regarding the growth of II-VI and III-V compounds have been tested experimentally and the dependence of the growth rates on the growth parameters has been verified. Moreover, it has been shown, that selected area epitaxy of II-VI and III-V compounds are governed by different surface kinetics. Coexisting secondary fluxes of both constituent species and the apparent non-existence of surface diffusion are characteristic for SMMBE of II-VI compounds. In contrast, III-V SMMBE is governed by the interplay between secondary group-V flux and the surface migration of group-III adatoms. In addition to the basic surface kinetic processes described by the model, the roles of orientation and strain-dependent growth dynamics, partial shadow, and material deposition on the mask (closure of apertures) have been discussed. The resulting advanced understanding of the growth dynamics (model and basic experiments) in combination with the implementation of technical improvements has enabled the development and application of a number of different processes for the fabrication of both II-VI and III-V nanostructures. In addition to specific material properties, various other phenomena have been exploited, e.g., self-organization. It has been shown that, e.g., single quantum dots and quantum wires can be reliably grown. Investigations performed on the SMMBE nanostructures have demonstrated the high positional and dimensional precision of the SMMBE technique. Bright cathodoluminescence demonstrates that the resulting quantum structures are of high structural and optical quality. In addition to these results, which demonstrate SMMBE as a prospective nanofabrication technique, the limitations of the method have also been discussed, and various approaches to overcome them have been suggested. Moreover, propositions for the fabrication of complex quantum devices by the multiple application of a stationary shadow mask have been put forward. In addition to selected area growth, the shadow masks can assist in etching, doping, and in situ contact definition in nanoscale selected areas. Due to the high precision and control over the dimensions and positions of the grown structures, which at the same time are of excellent chemical, crystal, and optical quality, SMMBE provides an interesting perspective for the fabrication of complex quantum devices from II-VI and III-V semiconductors.}, subject = {Verbindungshalbleiter}, language = {en} } @article{BrixnerPawłowskaGoetzetal.2014, author = {Brixner, Tobias and Pawłowska, Monika and Goetz, Sebastian and Dreher, Christian and Wurdack, Matthias and Krauss, Enno and Razinskas, Gary and Geisler, Peter and Hecht, Bert}, title = {Shaping and spatiotemporal characterization of sub-10-fs pulses focused by a high-NA objective}, doi = {10.1364/OE.22.031496}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111120}, year = {2014}, abstract = {We describe a setup consisting of a 4 f pulse shaper and a microscope with a high-NA objective lens and discuss the spects most relevant for an undistorted spatiotemporal profile of the focused beam. We demonstrate shaper-assisted pulse compression in focus to a sub-10-fs duration using phase-resolved interferometric spectral modulation (PRISM). We introduce a nanostructure-based method for sub-diffraction spatiotemporal characterization of strongly focused pulses. The distortions caused by optical aberrations and space-time coupling from the shaper can be reduced by careful setup design and alignment to about 10 nm in space and 1 fs in time.}, language = {en} } @article{KoenigBaenningerGarciaetal.2013, author = {K{\"o}nig, Markus and Baenninger, Matthias and Garcia, Andrei G. F. and Harjee, Nahid and Pruitt, Beth L. and Ames, C. and Leubner, Philipp and Br{\"u}ne, Christoph and Buhmann, Hartmut and Molenkamp, Laurens W. and Goldhaber-Gordon, David}, title = {Spatially Resolved Study of Backscattering in the Quantum Spin Hall State}, series = {Physical Review X}, volume = {3}, journal = {Physical Review X}, number = {2}, issn = {2160-3308}, doi = {10.1103/PhysRevX.3.021003}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127225}, pages = {21003}, year = {2013}, abstract = {The discovery of the quantum spin Hall (QSH) state, and topological insulators in general, has sparked strong experimental efforts. Transport studies of the quantum spin Hall state have confirmed the presence of edge states, showed ballistic edge transport in micron-sized samples, and demonstrated the spin polarization of the helical edge states. While these experiments have confirmed the broad theoretical model, the properties of the QSH edge states have not yet been investigated on a local scale. Using scanning gate microscopy to perturb the QSH edge states on a submicron scale, we identify well-localized scattering sites which likely limit the expected nondissipative transport in the helical edge channels. In the micron-sized regions between the scattering sites, the edge states appear to propagate unperturbed, as expected for an ideal QSH system, and are found to be robust against weak induced potential fluctuations.}, language = {en} }