@phdthesis{Brembs2000, author = {Brembs, Bj{\"o}rn}, title = {An Analysis of Associative Learning in Drosophila at the Flight Simulator}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1039}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {Most natural learning situations are of a complex nature and consist of a tight conjunction of the animal's behavior (B) with the perceived stimuli. According to the behavior of the animal in response to these stimuli, they are classified as being either biologically neutral (conditioned stimuli, CS) or important (unconditioned stimuli, US or reinforcer). A typical learning situation is thus identified by a three term contingency of B, CS and US. A functional characterization of the single associations during conditioning in such a three term contingency has so far hardly been possible. Therefore, the operational distinction between classical conditioning as a behavior-independent learning process (CS-US associations) and operant conditioning as essentially behavior-dependent learning (B-US associations) has proven very valuable. However, most learning experiments described so far have not been successful in fully separating operant from classical conditioning into single-association tasks. The Drosophila flight simulator in which the relevant behavior is a single motor variable (yaw torque), allows for the first time to completely separate the operant (B-US, B-CS) and the classical (CS-US) components of a complex learning situation and to examine their interactions. In this thesis the contributions of the single associations (CS-US, B-US and B-CS) to memory formation are studied. Moreover, for the first time a particularly prominent single association (CS-US) is characterized extensively in a three term contingency. A yoked control shows that classical (CS-US) pattern learning requires more training than operant pattern learning. Additionally, it can be demonstrated that an operantly trained stimulus can be successfully transferred from the behavior used during training to a new behavior in a subsequent test phase. This result shows unambiguously that during operant conditioning classical (CS-US) associations can be formed. In an extension to this insight, it emerges that such a classical association blocks the formation of an operant association, which would have been formed without the operant control of the learned stimuli. Instead the operant component seems to develop less markedly and is probably merged into a complex three-way association. This three-way association could either be implemented as a sequential B-CS-US or as a hierarchical (B-CS)-US association. The comparison of a simple classical (CS-US) with a composite operant (B, CS and US) learning situation and of a simple operant (B-US) with another composite operant (B, CS and US) learning situation, suggests a hierarchy of predictors of reinforcement. Operant behavior occurring during composite operant conditioning is hardly conditioned at all. The associability of classical stimuli that bear no relation to the behavior of the animal is of an intermediate value, as is operant behavior alone. Stimuli that are controlled by operant behavior accrue associative strength most easily. If several stimuli are available as potential predictors, again the question arises which CS-US associations are formed? A number of different studies in vertebrates yielded amazingly congruent results. These results inspired to examine and compare the properties of the CS-US association in a complex learning situation at the flight simulator with these vertebrate results. It is shown for the first time that Drosophila can learn compound stimuli and recall the individual components independently and in similar proportions. The attempt to obtain second-order conditioning with these stimuli, yielded a relatively small effect. In comparison with vertebrate data, blocking and sensory preconditioning experiments produced conforming as well as dissenting results. While no blocking could be found, a sound sensory preconditioning effect was obtained. Possible reasons for the failure to find blocking are discussed and further experiments are suggested. The sensory preconditioning effect found in this study is revealed using simultaneous stimulus presentation and depends on the amount of preconditioning. It is argued that this effect is a case of 'incidental learning', where two stimuli are associated without the need of reinforcement. Finally, the implications of the results obtained in this study for the general understanding of memory formation in complex learning situations are discussed.}, subject = {Taufliege}, language = {en} } @phdthesis{Keller2002, author = {Keller, Andreas}, title = {Genetic Intervention in Sensory Systems of a Fly}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-680}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Die vorliegende Arbeit vergleicht Transgene, die in Drosophila Neuronen exprimiert wurden, um diese abzut{\"o}ten oder zu blockieren. Tetanus Neurotoxin erwies sich als sehr effizient, um chemische Synapsen zu blockieren. Synapsen, die aus einer chemischen und einer elektrischen Komponente bestehen, ließen sich dagegen mit einem ektopisch exprimierten humanen Kalium-Kanal zuverl{\"a}ssiger ausschalten. Es wurden drei M{\"o}glichkeiten verglichen, eine zeitliche Kontrolle {\"u}ber die Funktion von Neuronen zu erlangen. Keines der getesteten Systeme erwies sich als universell anwendbar, aber die durch Rekombination induzierte Tetanus Neurotoxin Expression ist ein vielversprechender Ansatz. Die aus dieser vergleichenden methodischen Studie gewonnenen Ergebnisse wurden angewendet, um die Rolle von Neuronen in sensorischen Systemen bei der Verarbeitung verschiedener sensorischer Informationen zu untersuchen. Chemische und mechanische Rezeptorneuronen konnten den olfaktorisch gesteuerten Verhaltensweisen beziehungsweise den lokomotorischen Leistungen, denen sie zu Grunde liegen, zugeordnet werden. Hauptthema der Arbeit ist die Suche nach Neuronen, die an der Bewegungsdetektion im visuellen System beteiligt sind. Dabei zeigte sich, daß weder L2 noch L4 Neuronen im ersten visuellen Neuropil essentiell f{\"u}r die Detektion von Bewegung sind. Vielmehr deuten die Ergebnisse darauf hin, daß die Bewegungsdetektion {\"u}ber das Netzwerk der amacrinen Zellen (a) erfolgt. Die f{\"u}r vertikale Bewegung sensitiven VS Zellen in der Lobula Platte erwiesen sich als nicht notwendig f{\"u}r die Verhaltensreaktionen auf vertikale Bewegungsreize. Daraus folgt auch, daß in der Strukturmutante optomotor blind das Fehlen der VS Zellen nicht urs{\"a}chlich f{\"u}r die stark eingeschr{\"a}nkten Reaktionen auf vertikale Bewegung ist. Ein anderer Defekt in optomotor blind muß daf{\"u}r verantwortlich sein. Die Arbeit zeigt das große Potential der beschriebenen Methoden zur Untersuchung der Informationsverarbeitung im Nervensystem von Drosophila. Einzelne Neuronengruppen konnten komplexen Verhaltensweisen zugeordnet werden und Theorien {\"u}ber die Informationsverarbeitung konnten in Verhaltensexperimenten mit transgenen Fliegen getestet werden. Eine weitere Verfeinerung der Methodik zur genetischen Intervention wird das Drosophila Gehirn zu einem noch besseren Modell f{\"u}r die Informationsverarbeitung in Nervensystemen machen.}, subject = {Taufliege}, language = {en} } @phdthesis{Putz2002, author = {Putz, Gabriele}, title = {Characterization of memories and ignorant (S6KII) mutants in operant conditioning in the heat-box}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-4195}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Learning and memory processes of operant conditioning in the heat-box were analysed. Age, sex, and larval desity were not critical parameters influencing memory, while low or high activity levels of flies were negatively correlated with their performance. In a search for conditioning parameters leading to high retention scores, intermittent training was shown to give better results than continuous training. As the memory test is the immediate continuation of the conditioning phase just omitting reinforcement, we obtain a memory which consists of two components: a spatial preference for one side of the chamber and a stay-where-you-are effect in which the side preference is contaminated by the persistence of heat avoidance. Intermittent training strengthens the latter. In the next part, memory retention was investigated. Flies were trained in one chamber and tested in a second one after a brief reminder training. With this direct transfer, memory scores reflect an associative learning process in the first chamber. To investigate memory retention after extended time periods, indirect transfer experiments were performed. The fly was transferred to a different environment between training and test phases. With this procedure an after-effect of the training was still observed two hours later. Surprisingly, exposure to the chamber without conditioning also lead to a memory effect in the indirect transfer experiment. This exposure effect revealed a dispositional change that facilitates operant learning during the reminder training. The various memory effects are independent of the mushroom bodies. The transfer experiments and yoked controls proved that the heat-box records an associative memory. Even two hours after the operant conditioning procedure, the fly remembers that its position in the chamber controls temperature. The cAMP signaling cascade is involved in heat-box learning. Thus, amnesiac, rutabaga, and dunce mutants have an impaired learning / memory. Searching for, yet unknown, genes and signaling cascades involved in operant conditioning, a Drosophila melanogaster mutant screen with 1221 viable X-chromosome P-element lines was performed. 29 lines with consistently reduced heat avoidance/ learning or memory scores were isolated. Among those, three lines have the p[lacW] located in the amnesiac ORF, confirming that with the chosen candidate criteria the heat-box is a useful tool to screen for learning and /or memory mutants. The mutant line ignP1 (8522), which is defective in the gene encoding p90 ribosomal S6 kinase (S6KII), was investigated. The P-insertion of line ignP1 is the first Drosophila mutation in the ignorant (S6KII) gene. It has the transposon inserted in the first exon. Mutant males are characterized by low training performance, while females perform well in the standard experiment. Several deletion mutants of the ignorant gene have been generated. In precise jumpouts the phenotype was reverted. Imprecise jumpouts with a partial loss of the coding region were defective in operant conditioning. Surprisingly, null mutants showed wild-type behavior. This might indicate an indirect effect of the mutated ignorant gene on learning processes. In classical odor avoidance conditioning, ignorant null mutants showed a defect in the 3-min, 30-min, and 3-hr memory, while the precise jumpout of the transposon resulted in a reversion of the behavioral phenotype. Deviating results from operant and classical conditioning indicate different roles for S6KII in the two types of learning.}, subject = {Taufliege}, language = {en} } @phdthesis{Porsch2002, author = {Porsch, Matthias}, title = {OMB and ORG-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3614}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Members of the T-box gene family encode transcription factors that play key roles during embryonic development and organogenesis of invertebrates and vertebrates. The defining feature of T-box proteins is an about 200 aa large, conserved DNA binding motif, the T domain. Their importance for proper development is highlighted by the dramatic phenotypes of T-box mutant animals. My thesis was mainly focused on two Drosophila T-box genes, optomotor-blind (omb) and optomotor-blind related 1 (org-1), and included (i) a genetic analysis of org-1 and (ii) the identification of molecular determinants within OMB and ORG-1 that confer functional specificity. (i) Genetic analysis of org-1 initially based on a behavioral Drosophila mutant, C31. C31 is a X-linked, recessive mutant and was mapped to 7E-F, the cytological region of org-1. This pleiotropic mutant is manifested in walking defects, structural aberrations in the central brain, and "held-out" wings. Molecular analysis revealed that C31 contains an insertion of a 5' truncated I retrotransposon within the 3' untranslated transcript of org-1, suggesting that C31 might represent the first org-1 mutant. Based on this hypothesis, we screened 44.500 F1 female offspring of EMS mutagenized males and C31 females for the "held-out" phenotype, but failed to isolate any C31 or org-1 mutant, although this mutagenesis was functional per se. Since we could not exclude the possibility that our failure is due to an idiosyncracy of C31, we intended not to rely on C31 in further genetic experiments and followed a reverse genetic strategy . All P element lines cytologically mapping to 7E-7F were characterized for their precise insertion sites. 13 of the 19 analyzed lines had P element insertions within a hot-spot 37 kb downstream of org-1. No P element insertions within org-1 could be identified, but several P element insertions were determined on either side of org-1. The org-1 nearest insertions were used for local-hop experiments, in which we associated 6 new genes with P insertions, but failed to target org-1. The closest P elements are still 10 kb away from org-1. Subsequently, we employed org-1 flanking P elements to induce precise deletions in 7E-F spanning org-1. Two org-1 flanking P elements were brought together on a recombinant chromosome. Remobilization of P elements in cis configuration frequently results in deletions with the P element insertion sites as deficiency endpoints. In a first attempt, we expected to identify deficiencies by screening for C31 alleles. 8 new C31 alleles could be isolated. The new C31 chromosomes, however, did not carry the desired deletion. Molecular analysis indicated that C31 is not caused by aberrations in org-1, but by mutations in a distal locus. We repeated the P element remobilization and screened for the absence of P element markers. 4 lethal chromosomes could be isolated with a deletion of the org-1 locus. (ii) The consequences of ectopic org-1 were analyzed using UAS-org-1 transgenic flies and a number of different Gal4 driver lines. Misexpression of org-1 during imaginal development interfered with the normal development of many organs and resulted in flies with a plethora of phenotypes. These include a homeotic transformation of distal antenna (flagellum) into distal leg structures, a strong size reduction of the legs along their proximo-distal axis, and stunted wings. Like ectopic org-1, ectopic omb leads to dramatic changes of normal developmental pathways in Drosophila as well. dpp-Gal4/ UAS-omb flies are late pupal lethal and show an ectopic pair of wings and largely reduced eyes. GMR-Gal4 driven ectopic omb expression in the developing eye causes a degeneration of the photoreceptor cells, while GMR-Gal4/ UAS-org-1 flies have intact eyes. Hence, ectopic org-1 and omb induce profound phenotypes that are qualitatively different for these homologous genes. To begin to address the question where within OMB and ORG-1 the specificity determinants reside, we conceptionally subdivided both proteins into three domains and tested the relevance ofthese domains for functional specificity in vivo. The single domains were cloned and used as modules to assemble all possible omb-org-1 chimeric trans- genes. A method was developed to determine the relative expression strength of different UAS-transgenes, allowing to compare the various transgenic constructs for qualitative differences only, excluding different transgene quantities. Analysis of chimeric omb-org-1 transgenes with the GMR-Gal4 driver revealed that all three OMB domains contribute to functional specificity.}, subject = {Taufliege}, language = {en} } @phdthesis{Schwaerzel2003, author = {Schw{\"a}rzel, Martin}, title = {Localizing engrams of olfactory memories in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-5065}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Zars and co-workers were able to localize an engram of aversive olfactory memory to the mushroom bodies of Drosophila (Zars et al., 2000). In this thesis, I followed up on this finding in two ways. Inspired by Zars et al. (2000), I first focused on the whether it would also be possible to localize memory extinction.While memory extinction is well established behaviorally, little is known about the underlying circuitry and molecular mechanisms. In extension to the findings by Zars et al (2000), I show that aversive olfactory memories remain localized to a subset of mushroom body Kenyon cells for up to 3 hours. Extinction localizes to the same set of Kenyon cells. This common localization suggests a model in which unreinforced presentations of a previously learned odorant intracellularly antagonizes the signaling cascades underlying memory formation. The second part also targets memory localization, but addresses appetitive memory. I show that memories for the same olfactory cue can be established through either sugar or electric shock reinforcement. Importantly, these memories localize to the same set of neurons within the mushroom body. Thus, the question becomes apparent how the same signal can be associated with different events. It is shown that two different monoamines are specificaly necessary for formation of either of these memories, dopamine in case of electric shock and octopamine in case of sugar memory, respectively. Taking the representation of the olfactory cue within the mushroom bodies into account, the data suggest that the two memory traces are located in the same Kenyon cells, but in separate subcellular domains, one modulated by dopamine, the other by octopamine. Taken together, this study takes two further steps in the search for the engram. (1) The result that in Drosophila olfactory learning several memories are organized within the same set of Kenyon cells is in contrast to the pessimism expressed by Lashley that is might not be possible to localize an engram. (2) Beyond localization, a possibible mechanism how several engrams about the same stimulus can be localized within the same neurons might be suggested by the models of subcellular organisation, as postulated in case of appetitive and aversive memory on the one hand and acquisition and extinction of aversive memory on the other hand.}, subject = {Taufliege}, language = {en} } @phdthesis{Roth2003, author = {Roth, Martin}, title = {Functional and developmental characterisation of matrix binding sites in decapentaplegic}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7542}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {In the last years it became evident that many cytokines do not only bind to their specific cell surface receptors but also interact with components of the extracellular matrix. Mainly in Drosophila, several enzymes were identified, that are involved in glycosaminoglycan synthesis. Mutations in these enzymes mostly result in disturbances of several signaling pathways like hedgehog, wingless, FGF or dpp. In most cases it was, due to these pleiotropic effects, not possible to examine the relevance of matrix interactions for single pathways. The aim of this work was to examine the relevance of matrix interactions for the TGF-ß superfamily member DPP. Based on the fact that DPP is highly homologous to human BMP-2, the basic N-terminus of mature DPP was mutated, which has been shown to contain a heparin-binding site in BMP-2. Thus, a wildtype variant (D-MYC), a deletion variant (D-DEL), which lacked the whole basic part of the N-terminus and a duplication variant (D-DUP), which contained a second copy of the basic core moitiv, were generated. In order to characterise the variants biochemically, they were expressed in E.coli and refolded in a bioactive form. In chicken limbbud assay, the deletion variant was much more active than the wildtype variant, comparable to data of BMP-2. By means of biacore mesurements with the immobilised ectodomain of the high affinity type I receptor thick veins, it could be demonstrated, that the variants differ only in matrix binding and not in their receptor affinity. Different matrix binding was shown by Heparin FPLC. The biological relevance of the matrix interaction of DPP was examined in transgenic flies. To allow expression of the different variants under the control of various Gal4 driver lines, they were cloned behind an UAS-promoter site. In early tracheal development, a strong dependence of DPP signaling on matrix binding was observed. While ectopic expression of the deletion variant caused only minor defects, the branching pattern was strongly disturbed by overexpression of wildtype and duplication variant. Ubiquitous expression of the variants in the wing imaginal disc caused overproliferation of the disc and expansion of the omb target gene expression. The extent of phenotypes correlated with the matrix binding ability of the variants. Corresponding disturbances of the wing vein pattern was observed in adult flies. By the crossing of different dpp allels, transheterozygous animals were created, that lack dpp only in imaginal discs. Expression of the variants under the control of a suitable dpp-Gal4 driver line revealed insights into the biological relevance of matrix binding on DPP gradient formation and specific target gene activation in wing imaginal discs. It was shown, that all variants were able to generate a functional DPP gradient with correct expression of the target genes omb and spalt. Again a correlation between extent of target gene domains and matrix binding ability of the corresponding variants was found. Thus by mutating the N-terminus of DPP, it could be shown that this is responsible for DPP`s matrix interaction. Also the relevance of matrix binding of DPP in different tissues was examined. It turned out, that the reorganisation of tracheal branching by DPP strongly depends on matrix interactions wheras the establishing of a gradient in wing imaginal discs depends only gradually on matrix interactions. Based on these data a model for the action of DPP/TGFßs as morphogens was established. While a deletion of matrix binding leads to a decrease in specific bioactivity of the cytokine, the latter is increased by additional matrix binding sites.}, subject = {Taufliege}, language = {en} } @phdthesis{Schwenkert2005, author = {Schwenkert, Isabell}, title = {Phenotypic characterization of hangover at the neuromuscular junction}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14977}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Ethanoltoleranz beruht vermutlich auf Ver{\"a}nderung in synaptischer Plastizit{\"a}t; da die Mechanismen, die zu dieser Anpassung der Synapsen f{\"u}hren, in hang-Mutanten offensichtlich defekt sind, war es Ziel dieser Arbeit zu erkl{\"a}ren, wie HANG zu synaptischer Plastizit{\"a}t beitr{\"a}gt. In diesem Zusammenhang war es besonders wichtig herauszufinden, in welchem neuronalen Prozeß HANG eine Rolle spielt. Antik{\"o}rperfarbungen gegen HANG zeigten, da das Protein in allen neuronalen Zellkernen larvaler und adulter Gehirne vorhanden ist. Gehirne der hangAE10 Mutante zeigen keine F{\"a}rbung, was best{\"a}tigt, da diese Tiere Nullmutanten f{\"u}r HANG sind. Eine genauere Analyse der Verteilung von HANG im Zellkern ergab, daß HANG in einem punktartigen Muster an bestimmten Stellen im Kern angereichert ist; diese HANG-Aggregate sind an der Innenseite der Kernmembran lokalisiert und colokalisieren nicht mit dem Chromatin. Auf der Basis dieser Ergebnissen wurde postuliert, daß HANG vermutlich an der Stabilisierung, Prozessierung oder dem Export von mRNAs beteiligt ist. Da synaptische Plastizit{\"a}t gut an den einzelnen Neuronen der neuromuskul{\"a}ren Synapse von Drosophila-Larven studiert werden kann, wurde die Morphologie der Motorneurone dritter Larven am Muskelpaar 6/7 des Segments A4 untersucht. Diese Untersuchungen zeigten, da Boutonanzahl und Axonl{\"a}nge in hangAE10-Larven um 40 \% erh{\"o}ht sind. Außerdem zeigen einige Boutons der hang-Mutanten eine abnormale, sanduhrf{\"o}rmige Form, was darauf hinweist, daß sie nach Initiation der Bouton-Teilung m{\"o}glicherweise in einem halb-separierten Zustand geblieben sind. Die Zunahme an Boutons in den Mutanten ist im wesentlichen auf eine Zunahme der Anzahl der Typ Ib-Boutons zur{\"u}ckzuf{\"u}hren. Die Analyse der Verteilung verschiedener synaptischer Marker in hangover-Mutanten ergab keine Hinweise auf Abnormalit{\"a}ten im Zytoskelett oder in der Ausbildung der pr{\"a}-und postsynaptischen Strukturen. Des weiteren ist die Anzahl der aktiven Zonen relativ zur Boutonoberfl{\"a}che nicht ver{\"a}ndert; da hang-Mutanten aber mehr synaptische Boutons pro synaptischem Terminal besitzen, kann man insgesamt von einer Zunahme der Anzahl der aktiven Zonen ausgehen. Die pr{\"a}synaptische Expression von HANG in den Mutanten rettet die erh{\"o}hte Boutonanzahl und die verl{\"a}ngerten Axone, was ebenfalls beweist, daß die beobachteten synaptischen Defekte auf das Fehlen von HANG und nicht auf Sekund{\"a}rmutationen zur{\"u}ckzuf{\"u}hren sind. Eine postsynaptische Expression der hangover cDNA in den Mutanten dagegen rettet den Ph{\"a}notyp nicht. Die Anzahl der synaptischen Boutons wird unter anderem durch cAMP-Levels bestimmt, welche somit synaptische Plastizit{\"a}t regeln. Da hang-Mutanten eine erh{\"o}hte Boutonanzahl aufweisen, f{\"u}hrte dies zu der Spekulation, daß der Ph{\"a}notyp dieser Mutanten m{\"o}glicherweise auf ver{\"a}nderte cAMPlevels zur{\"u}ckzuf{\"u}hren ist. Um dies zu {\"u}berpr{\"u}fen, wurde die Morphologie der neuromuskul{\"a}ren Synapsen von hangAE10-Larven mit denen von dnc1 verglichen, welche Defekte in der cAMP-Kaskade aufweisen. Einige Aspekte des Ph{\"a}notyps (z. B. die Zunahme der Boutonanzahl und das Verhaltnis von aktiven Zonen pro Boutonfl{\"a}che) sind sehr ¨ahnlich; jedoch unterscheiden sich die beiden Mutanten in anderen morphologischen Aspekten. Die Expression eines UAS-dnc-Transgens in hangover-Mutanten modifizierte den hang-Ph{\"a}notyp ebenfalls nicht. Auf der Basis der Ergebnisse dieser Arbeit wurde ein Modell f{\"u}r die Funktion von HANG erstellt, nach dem dieses Protein vermutlich am Isoform-spezifischen Spleißen bestimmter Transkripte beteiligt ist, deren Produkte f{\"u}r die synaptische Plastizit{\"a}t an der neuromuskul{\"a}ren Synapse ben{\"o}tigt werden.}, subject = {Taufliege}, language = {en} } @phdthesis{Wagh2005, author = {Wagh, Dhananjay Anil}, title = {"Bruchpilot" -molecular and functional characterization of a novel active zone protein at the Drosophila synapse}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14989}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Chemical neurotransmission is a complex process of central importance for nervous system function. It is thought to be mediated by the orchestration of hundreds of proteins for its successful execution. Several synaptic proteins have been shown to be relevant for neurotransmission and many of them are highly conserved during evolution- suggesting a universal mechanism for neurotransmission. This process has checkpoints at various places like, neurotransmitter uptake into the vesicles, relocation of the vesicles to the vicinity of calcium channels in order to facilitate Ca2+ induced release thereby modulating the fusion probability, formation of a fusion pore to release the neurotransmitter and finally reuptake of the vesicles by endocytosis. Each of these checkpoints has now become a special area of study and maintains its own importance for the understanding of the overall process. Ca2+ induced release occurs at specialized membrane structures at the synapse known as the active zones. These are highly ordered electron dense grids and are composed of several proteins which assist the synaptic vesicles in relocating in the vicinity of Ca2+ channels thereby increasing their fusion probability and then bringing about the vesicular fusion itself. All the protein modules needed for these processes are thought to be held in tight arrays at the active zones, and the functions of a few have been characterized so far at the vertebrate active zones. Our group is primarily interested in characterizing the molecular architecture of the Drosophila synapse. Due to its powerful genetics and well-established behavioural assays Drosophila is an excellent system to investigate neuronal functioning. Monoclonal antibodies (MABs) from a hybridoma library against Drosophila brain are routinely used to detect novel proteins in the brain in a reverse genetic approach. Upon identification of the protein its encoding genetic locus is characterized and a detailed investigation of its function is initiated. This approach has been particularly useful to detect synaptic proteins, which may go undetected in a forward genetic approach due to lack of an observable phenotype. Proteins like CSP, Synapsin and Sap47 have been identified and characterized using this approach so far. MAB nc82 has been one of the shortlisted antibodies from the same library and is widely used as a general neuropil marker due to the relative transparency of immunohistochemical whole mount staining obtained with this antibody. A careful observation of double stainings at the larval neuromuscular junctions with MAB nc82 and other pre and post-synaptic markers strongly suggested an active zone localization of the nc82 antigen. Synaptic architecture is well characterized in Drosophila at the ultrastructural level. However, molecular details for many synaptic components and especially for the active zone are almost entirely unknown. A possible localization at the active zone for the nc82 antigen served as the motivation to initiate its biochemical characterization and the identification of the encoding gene. In the present thesis it is shown by 2-D gel analysis and mass spectrometry that the nc82 antigen is a novel active zone protein encoded by a complex genetic locus on chromosome 2R. By RT-PCR exons from three open reading frames previously annotated as separate genes are demonstrated to give rise to a transcript of at least 5.5 kb. Northern blots produce a prominent signal of 11 kb and a weak signal of 2 kb. The protein encoded by the 5.5 kb transcript is highly conserved amongst insects and has at its N-terminus significant homology to the previously described vertebrate active zone protein ELKS/ERC/CAST. Bioinformatic analysis predicts coiled-coil domains spread all over the sequence and strongly suggest a function involved in organizing or maintaining the structure of the active zone. The large C-terminal region is highly conserved amongst the insects but has no clear homologues in veretebrates. For a functional analysis of this protein transgenic flies expressing RNAi constructs under the control of the Gal4 regulated enhancer UAS were kindly provided by the collaborating group of S.Sigrist (G\&\#1616;ttingen). A strong pan-neuronal knockdown of the nc82 antigen by transgenic RNAi expression leads to embryonic lethality. A relatively weaker RNAi expression results in behavioural deficits in adult flies including unstable flight and impaired walking behavior. Due to this peculiar phenotype as observed in the first knockdown studies the gene was named "bruchpilot" (brp) encoding the protein "Bruchpilot (BRP)" (German for crash pilot). A pan-neuronal as well as retina specific downregulation of this protein results in loss of ON and OFF transients in ERG recordings indicating dysfunctional synapses. Retina specific downregulation also shows severely impaired optomotor behaviour. Finally, at an ultrastructural level BRP downregulation seems to impair the formation of the characteristic T-shaped synaptic ribbons at the active zones without significantly altering the overall synaptic architecture (in collaboration with E.Asan). Vertebrate active zone protein Bassoon is known to be involved in attaching the synaptic ribbons to the active zones as an adapter between active zone proteins RIBEYE and ERC/CAST. A mutation in Bassoon results in a floating synaptic ribbon phenotype. No protein homologous to Bassoon has been observed in Drosophila. BRP downregulation also results in absence of attached synaptic ribbons at the active zones. This invites the speculation of an adapter like function for BRP in Drosophila. However, while Bassoon mutant mice are viable, BRP deficit in addition to the structural phenotype also results in severe behavioural and physiological anomalies and even stronger downregulation causes embryonic lethality. This therefore suggests an additional and even more important role for BRP in development and normal functioning of synapses in Drosophila and also in other insects. However, how BRP regulates synaptic transmission and which other proteins are involved in this BRP dependant pathway remains to be investigated. Such studies certainly will attract prominent attention in the future.}, subject = {Taufliege}, language = {en} } @phdthesis{Schindelin2005, author = {Schindelin, Johannes}, title = {The standard brain of Drosophila melanogaster and its automatic segmentation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15518}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In this thesis, I introduce the Virtual Brain Protocol, which facilitates applications of the Standard Brain of Drosophila melanogaster. By providing reliable and extensible tools for the handling of neuroanatomical data, this protocol simplifies and organizes the recurring tasks involved in these applications. It is demonstrated that this protocol can also be used to generate average brains, i.e. to combine recordings of several brains with the same features such that the common features are emphasized. One of the most important steps of the Virtual Insect Protocol is the aligning of newly recorded data sets with the Standard Brain. After presenting methods commonly applied in a biological or medical context to align two different recordings, it is evaluated to what extent this alignment can be automated. To that end, existing Image Processing techniques are assessed. I demonstrate that these techniques do not satisfy the requirements needed to guarantee sensible alignments between two brains. Then, I analyze what needs to be taken into account in order to formulate an algorithm which satisfies the needs of the protocol. In the last chapter, I derive such an algorithm using methods from Information Theory, which bases the technique on a solid mathematical foundation. I show how Bayesian Inference can be applied to enhance the results further. It is demonstrated that this approach yields good results on very noisy images, detecting apparent boundaries between structures. The same approach can be extended to take additional knowledge into account, e.g. the relative position of the anatomical structures and their shape. It is shown how this extension can be utilized to segment a newly recorded brain automatically.}, subject = {Taufliege}, language = {en} } @phdthesis{Masek2005, author = {Masek, Pavel}, title = {Odor intensity learning in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15546}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {It has been known for a long time that Drosophila can learn to discriminate not only between different odorants but also between different concentrations of the same odor. Olfactory associative learning has been described as a pairing between odorant and electric shock and since then, most of the experiments conducted in this respect have largely neglected the dual properties of odors: quality and intensity. For odorant-coupled short-term memory, a biochemical model has been proposed that mainly relies on the known cAMP signaling pathway. Mushroom bodies (MB) have been shown to be necessary and sufficient for this type of memory, and the MB-model of odor learning and short-term memory was established. Yet, theoretically, based on the MB-model, flies should not be able to learn concentrations if trained to the lower of the two concentrations in the test. In this thesis, I investigate the role of concentration-dependent learning, establishment of a concentration-dependent memory and their correlation to the standard two-odor learning as described by the MB-model. In order to highlight the difference between learning of quality and learning of intensity of the same odor I have tried to characterize the nature of the stimulus that is actually learned by the flies, leading to the conclusion that during the training flies learn all possible cues that are presented at the time. The type of the following test seems to govern the usage of the information available. This revealed a distinction between what flies learned and what is actually measured. Furthermore, I have shown that learning of concentration is associative and that it is symmetrical between high and low concentrations. I have also shown how the subjective quality perception of an odor changes with changing intensity, suggesting that one odor can have more than one scent. There is no proof that flies perceive a range of concentrations of one odorant as one (odor) quality. Flies display a certain level of concentration invariance that is limited and related to the particular concentration. Learning of concentration is relevant only to a limited range of concentrations within the boundaries of concentration invariance. Moreover, under certain conditions, two chemically distinct odorants could smell sufficiently similarly such, that they can be generalized between each other like if they would be of the same quality. Therefore, the abilities of the fly to identify the difference in quality or in intensity of the stimuli need to be distinguished. The way how the stimulus is analyzed and processed speaks in favor of a concept postulating the existence of two separated memories. To follow this concept, I have proposed a new form of memory called odor intensity memory (OIM), characterized it and compared it to other olfactory memories. OIM is independent of some members of the known cAMP signaling pathway and very likely forms the rutabaga-independent component of the standard two-odor memory. The rutabaga-dependent odor memory requires qualitatively different olfactory stimuli. OIM is revealed within the limits of concentration invariance where the memory test gives only sub-optimal performance for the concentration differences but discrimination of odor quality is not possible at all. Based on the available experimental tools, OIM seems to require the mushroom bodies the same as odor-quality memory but its properties are different. Flies can memorize the quality of several odorants at a given time but a newly formed memory of one odor interferes with the OIM stored before. In addition, the OIM lasts only 1 to 3 hours - much shorter than the odor-quality memory.}, subject = {Taufliege}, language = {en} } @phdthesis{Cruz2006, author = {Cruz, Alexandre Bettencourt da}, title = {Molecular and functional characterization of the swiss-cheese and olk mutants in Drosophila melanogaster : two approaches to killing neurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17734}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {In this thesis two genes involved in causing neurodegenerative phenotypes in Drosophila are described. olk (omb-like), a futsch allele, is a micotubule associated protein (MAP) which is homologous to MAP1B and sws (swiss cheese) a serine esterase of yet unknown function within the nervous system. The lack of either one of these genes causes progressive neurodegeneration in two different ways. The sws mutant is characterized by general degeneration of the adult nervous system, glial hyperwrapping and neuronal apoptosis. Deletion of NTE (neuropathy target esterase), the SWS homolog in vertebrates, has been shown to cause a similar pattern of progressive neural degeneration in mice. NTE reacts with organophosphates causing axonal degeneration in humans. Inhibition of vertebrate NTE is insufficient to induce paralyzing axonal degeneration, a reaction called "aging reaction" is necessary for the disease to set in. It is hypothesized that a second "non-esterase" function of NTE is responsible for this phenomenon. The biological function of SWS within the nervous system is still unknown. To characterize the function of this protein several transgenic fly lines expressing different mutated forms of SWS were established. The controlled expression of altered SWS protein with the GAL4/UAS system allowed the analysis of isolated parts of the protein that were altered in the respective constructs. The characterization of a possible non-esterase function was of particular interest in these experiments. One previously described aberrant SWS construct lacking the first 80 amino acids (SWS\&\#916;1-80) showed a deleterious, dominant effect when overexpressed and was used as a model for organophosphate (OP) intoxication. This construct retains part of its detrimental effect even without catalytically active serine esterase function. This strongly suggests that there is another characteristic to SWS that is not defined solely by its serine esterase activity. Experiments analyzing the lipid contents of sws mutant, wildtype (wt) and SWS overexpressing flies gave valuable insights into a possible biological function of SWS. Phosphatidylcholine, a major component of cell membranes, accumulates in sws mutants whereas it is depleted in SWS overexpressing flies. This suggests that SWS is involved in phosphatidylcholine regulation. The produced \&\#945;-SWS antibody made it possible to study the intracellular localization of SWS. Images of double stainings with ER (endoplasmic reticulum) markers show that SWS is in great part localized to the ER. This is consistent with findings of SWS/ NTE localization in yeast and mouse cells. The olk mutant also shows progressive neurodegeneration but it is more localized to the olfactory system and mushroom bodies. Regarding specific cell types it seemed that specifically the projection neurons (PNs) are affected. A behavioral phenotype consisting of poor olfactory memory compared to wt is also observed even before histologically visible neurodegeneration sets in. Considering that the projection neurons connect the antennal lobes to the mushroom bodies, widely regarded as the "learning center", this impairment was expected. Three mutants where identified (olk1-3) by complementation analysis with the previously known futschN94 allele and sequencing of the coding sequence of olk1 revealed a nonsense mutation early in the protein. Consistent with the predicted function of Futsch as a microtubule associated protein (MAP), abnormalities are most likely due to a defective microtubule network and defects in axonal transport. In histological sections a modified cytoskeletal network is observed and western blots confirm a difference in the amount of tubulin present in the olk1 mutant versus the wt. The elaboration of neuronal axons and dendrites is dependent on a functional cytoskeleton. Observation of transport processes in primary neural cultures derived from olk1 mutant flies also showed a reduction of mitochondrial transport. Interaction with the fragile X mental retardation gene (dfmr1) was observed with the olk mutant. A dfmr1/ olk1 double mutant shows an ameliorated phenotype compared to the olk1 single mutant. tau, another MAP gene, was also shown to be able to partially rescue the olk1 mutant.}, subject = {Taufliege}, language = {en} } @phdthesis{Thum2006, author = {Thum, Andreas Stephan}, title = {Sugar reward learning in Drosophila : neuronal circuits in Drosophila associative olfactory learning}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17930}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Genetic intervention in the fly Drosophila melanogaster has provided strong evidence that the mushroom bodies of the insect brain act as the seat of memory traces for aversive and appetitive olfactory learning (reviewed in Heisenberg, 2003). In flies, electroshock is mainly used as negative reinforcer. Unfortunately this fact complicates a comparative consideration with other inscets as most studies use sugar as positive reinforcer. For example, several lines of evidence from honeybee and moth have suggested another site, the antennal lobe, to house neuronal plasticity underlying appetitive olfactory memory (reviewed in Menzel, 2001; Daly et al., 2004). Because of this I focused my work mainly on appetitive olfactory learning. In the first part of my thesis, I used a novel genetic tool, the TARGET system (McGuire et al., 2003), which allows the temporally controlled expression of a given effector gene in a defined set of cells. Comparing effector genes which either block neurotransmission or ablate cells showed important differences, revealing that selection of the appropriate effector gene is critical for evaluating the function of neural circuits. In the second part, a new engram of olfactory memory in the Drosophila projection neurons is described by restoring Rutabaga adenlylate cyclase (rut-AC) activity specifically in these cells. Expression of wild-type rutabaga in the projection neurons fully rescued the defect in sugar reward memory, but not in aversive electric shock memory. No difference was found in the stability of the appetitive memories rescued either in projection neurons or Kenyon cells. In the third part of the thesis I tried to understand how the reinforcing signals for sugar reward are internally represented. In the bee Hammer (1993) described a single octopaminergic neuron - called VUMmx1 - that mediates the sugar stimulus in associative olfactory reward learning. Analysis of single VUM neurons in the fly (Selcho, 2006) identified a neuron with a similar morphology as the VUMmx1 neuron. As there is a mutant in Drosophila lacking the last enzymatic step in octopamine synthesis (Monastirioti et al., 1996), Tyramine beta Hydroxylase, I was able to show that local Tyramine beta Hydroxylase expression successfully rescued sugar reward learning. This allows to conclude that about 250 cells including the VUM cluster are sufficient for mediating the sugar reinforcement signal in the fly. The description of a VUMmx1 similar neuron and the involvement of the VUM cluster in mediating the octopaminergic sugar stimulus are the first steps in establishing a neuronal map for US processing in Drosophila. Based on this work several experiments are contrivable to reach this ultimate goal in the fly. Taken together, the described similiarities between Drosophila and honeybee regarding the memory organisation in MBs and PNs and the proposed internal representation of the sugar reward suggest an evolutionarily conserved mechanism for appetitive olfactory learning in insects.}, subject = {Taufliege}, language = {en} } @phdthesis{Jenett2007, author = {Jenett, Arnim}, title = {The Virtual Insect Brain Protocol : development and application of software for the standardization of neuroanatomy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-22297}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Since the fruit fly Drosophila melanogaster entered the laboratories as a model organism, new genetic, physiological, molecular and behavioral techniques for the functional analysis of the brain rapidly accumulated. Nowadays this concerted assault obtains its main thrust form Gal4 expression patterns that can be visualized and provide the means for manipulating -in unrestrained animals- groups of neurons of the brain. To take advantage of these patterns one needs to know their anatomy. This thesis describes the Virtual Insect Brain (VIB) protocol, a software package for the quantitative assessment, comparison, and presentation of neuroanatomical data. It is based on the 3D-reconstruction and visualization software Amira (Mercury Inc.). Its main part is a standardization procedure which aligns individual 3D images (series of virtual sections obtained by confocal microscopy) to a common coordinate system and computes average intensities for each voxel (volume pixel). The VIB protocol facilitates direct comparison of gene expression patterns and describes their interindividual variability. It provides volumetry of brain regions and helps to characterize the phenotypes of brain structure mutants. Using the VIB protocol does not require any programming skills since all operations are carried out at a (near to) self-explanatory graphical user interface. Although the VIB protocol has been developed for the standardization of Drosophila neuroanatomy, the program structure can be used for the standardization of other 3D structures as well. Standardizing brains and gene expression patterns is a new approach to biological shape and its variability. Using the VIB protocol consequently may help to integrate knowledge on the correlation of form and function of the insect brain. The VIB protocol provides a first set of tools supporting this endeavor in Drosophila. The software is freely available at http://www.neurofly.de.}, subject = {Taufliege}, language = {en} } @phdthesis{Rister2008, author = {Rister, Jens}, title = {Genetic dissection of peripheral pathways in the visual system of Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-25980}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Die visuellen Systeme von Vertebraten und Invertebraten weisen {\"A}hnlichkeiten in den ersten Schritten visueller Informationsverarbeitung auf. Im menschlichen Gehirn werden zum Beispiel die Modalit{\"a}ten Farbe, Form und Bewegung separat in parallelen neuronalen Pfaden verarbeitet. Dieses grundlegende Merkmal findet sich auch bei der Fliege Drosophila melanogaster, welche eine {\"a}hnliche Trennung in farbsensitive und (farbenblinde) bewegungssensitive Pfade aufweist, die durch zwei verschiedene Gruppen von Photorezeptoren (dem R1-6 und dem R7/8 System) determiniert werden. Fliegen haben ein hoch organisiertes visuelles System, welches durch die repetitive, retinotope Organisation von vier Neuropilen charakterisiert ist: Dies sind die Lamina, die Medulla, die Lobula und die Lobulaplatte. Jedes einzelne besteht aus Kolumnen, die denselben Satz von Nervenzellen enthalten. In der Lamina formen Axonb{\"u}ndel von sechs Photorezeptoren R1-6, die auf denselben Bildpunkt blicken, S{\"a}ulen, die als Cartridges bezeichnet werden. Diese sind die funktionellen visuellen „sampling units" und sind mit vier Typen von Interneuronen erster Ordnung assoziiert, die von R1-6 den gleichen Input erhalten: L1, L2, L3 und die Amakrinzellen (amc, mit ihrem postsynaptischen Partner T1). Diese stellen parallele Pfade dar, die auf anatomischer Ebene im Detail untersucht wurden; jedoch ist wenig {\"u}ber ihre funktionelle Rolle bei der Verarbeitung f{\"u}r das Verhalten relevanter Information bekannt, z.B. hinsichtlich der Blickstabilisierung, der visuellen Kurskontrolle oder der Fixation von Objekten. Die Verf{\"u}gbarkeit einer Vielfalt von neurogenetischen Werkzeugen f{\"u}r die Struktur-Funktionsanalyse bei Drosophila erm{\"o}glicht es, erste Schritte in Richtung einer genetischen Zerlegung des visuellen Netzwerks zu unternehmen, das Bewegungs- und Positionssehen vermittelt. In diesem Zusammenhang erwies sich die Wahl des Effektors als entscheidend. {\"U}berraschenderweise wurde festgestellt, dass das clostridiale Tetanus-Neurotoxin die Photorezeptorsynapsen adulter Drosophila Fliegen nicht blockiert, hingegen irreversible Sch{\"a}den bei Expression w{\"a}hrend deren Entwicklung verursacht. Aus diesem Grund wurde das dominant-negative shibire Allel shits1, welches sich als geeigneter erwies, zur Blockierung der Lamina Interneurone verwendet, um die Notwendigkeit der jeweiligen Pfade zu analysieren. Um festzustellen, ob letztere auch hinreichend f{\"u}r das gleiche Verhalten waren, wurde f{\"u}r die umgekehrte Strategie die Tatsache ausgenutzt, daß die Lamina Interneurone Histaminrezeptoren exprimieren, die vom ort Gen kodiert werden. Die spezifische Rettung der ort Funktion in definierten Pfaden im mutanten Hintergrund erm{\"o}glichte festzustellen, ob sie f{\"u}r eine bestimmte Funktion hinreichend waren. Diese neurogenetischen Methoden wurden mit der optomotorischen Reaktion und dem objektinduzierten Orientierungsverhalten als Verhaltensmaß kombiniert, um folgende Fragen innerhalb dieser Doktorarbeit zu beantworten: (a) Welche Pfade stellen einen Eingang in elementare Bewegungsdetektoren dar und sind notwendig und/oder hinreichend f{\"u}r die Detektion gerichteter Bewegung? (b) Gibt es Pfade, die spezifisch Reaktionen auf unidirektionale Bewegung vermitteln? (c) Welche Pfade sind notwendig und/oder hinreichend f{\"u}r das objektinduzierte Orientierungsverhalten? Einige grundlegende Eigenschaften des visuellen Netzwerks konnten dabei aufgedeckt werden: Die zwei zentralen Cartridge Pfade, die von den großen Monopolarzellen L1 und L2 repr{\"a}sentiert werden, haben eine Schl{\"u}sselfunktion bei der Bewegungsdetektion. {\"U}ber ein breites Spektrum von Reizbedingungen hinweg sind die beiden Subsysteme redundant und k{\"o}nnen Bewegung unabh{\"a}ngig voneinander verarbeiten. Um eine Beeintr{\"a}chtigung des Systems festzustellen, wenn nur einer der beiden Pfade intakt ist, muß dieses an die Grenzen seiner Leistungsf{\"a}higkeit gebracht werden. Bei niedrigem Signal/Rauschverh{\"a}ltnis, d.h. bei geringem Musterkontrast oder geringer Hintergrundbeleuchtung, hat der L2 Pfad eine h{\"o}here Sensitivit{\"a}t. Bei mittlerem Musterkontrast sind beide Pfade auf die Verarbeitung unidirektionaler Bewegung in entgegengesetzten Reizrichtungen spezialisiert. Im Gegensatz dazu sind weder der L3, noch der amc/T1 Pfad notwendig oder hinreichend f{\"u}r die Detektion von Bewegungen. W{\"a}hrend der erstere Positionsinformation f{\"u}r Orientierungsverhalten zu verarbeiten scheint, nimmt der letztere eine modulatorische Rolle bei mittlerem Kontrast ein. Es stellte sich heraus, daß das Orientierungsverhalten noch robuster als das Bewegungssehen ist und m{\"o}glicherweise auf einem weniger komplizierten Mechanismus beruht, da dieser keinen nichtlinearen Vergleich der Signale benachbarter visueller „sampling units" ben{\"o}tigt. Die Fixation von Objekten setzt nicht grunds{\"a}tzlich das Bewegungssehen voraus, allerdings verbessert die Detektion von Bewegung die Fixation von Landmarken, im besonderen, wenn diese schmal sind oder einen geringen Kontrast aufweisen.}, subject = {Genetik}, language = {en} } @phdthesis{Bertolucci2008, author = {Bertolucci, Franco}, title = {Operant and classical learning in Drosophila melanogaster: the ignorant gene (ign)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33984}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {One of the major challenges in neuroscience is to understand the neuronal processes that underlie learning and memory. For example, what biochemical pathways underlie the coincidence detection between stimuli during classical conditioning, or between an action and its consequences during operant conditioning? In which neural substructures is this information stored? How similar are the pathways mediating these two types of associative learning and at which level do they diverge? The fly Drosophila melanogaster is an appropriate model organism to address these questions due to the availability of suitable learning paradigms and neurogenetic tools. It permits an extensive study of the functional role of the gene S6KII which in Drosophila had been found to be differentially involved in classical and operant conditioning (Bertolucci, 2002; Putz et al., 2004). Genomic rescue experiments showed that olfactory conditioning in the Tully machine, a paradigm for Pavlovian olfactory conditioning, depends on the presence of an intact S6KII gene. This rescue was successfully performed on both the null mutant and a partial deletion, suggesting that the removal of the phosphorylating unit of the kinase was the main cause of the functional defect. The GAL4/UAS system was used to achieve temporal and spatial control of S6KII expression. It was shown that expression of the kinase during the adult stage was essential for the rescue. This finding ruled out a developmental origin of the mutant learning phenotype. Furthermore, targeted spatial rescue of S6KII revealed a requirement in the mushroom bodies and excluded other brain structures like the median bundle, the antennal lobes and the central complex. This pattern is very similar to the one previously identified with the rutabaga mutant (Zars et al., 2000). Experiments with the double mutant rut, ign58-1 suggest that both rutabaga and S6KII operate in the same signalling pathway. Previous studies had already shown that deviating results from operant and classical conditioning point to different roles for S6KII in the two types of learning (Bertolucci, 2002; Putz, 2002). This conclusion was further strengthened by the defective performance of the transgenic lines in place learning and their normal behavior in olfactory conditioning. A novel type of learning experiment, called "idle experiment", was designed. It is based on the conditioning of the walking activity and represents a purely operant task, overcoming some of the limitations of the "standard" heat-box experiment, a place learning paradigm. The novel nature of the idle experiment allowed exploring "learned helplessness" in flies, unveiling astonishing similarities to more complex organisms such as rats, mice and humans. Learned helplessness in Drosophila is found only in females and is sensitive to antidepressants.}, subject = {Klassische Konditionierung}, language = {en} } @phdthesis{Michels2008, author = {Michels, Birgit}, title = {Towards localizing the Synapsin-dependent olfactory memory trace in the brain of larval Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36338}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Animals need to adapt and modify their behaviour according to a changing environment. In particular, the ability to learn about rewarding or punishing events is crucial for survival. One key process that underlies such learning are modifications of the synaptic connection between nerve cells. This Thesis is concerned with the genetic determinants of such plasticity, and with the site of these modifications along the sensory-to-motor loops in Drosophila olfactory learning. I contributed to the development and detailed parametric description of an olfactory associative learning paradigm in larval fruit flies (Chapter I.1.). The robustness of this learning assay, together with a set of transgenic Drosophila strains established during this Thesis, enabled me to study the role for Synapsin, a presynaptic phosphoprotein likely involved in synaptic plasticity, in this form of learning (Chapter I.2.), and to investigate the cellular site of the corresponding Synapsin-dependent memory trace (Chapter I.3.). These data provide the first comprehensive account to-date of the neurogenetic bases of learning in larval Drosophila. The role for Synapsin was also analyzed with regard to pain-relief learning in adult fruit flies (Chapter II.1.); that is, if an odour precedes an electric shock during training, flies subsequently avoid that odour ('punishment learning'), whereas presentation of the odour upon the cessation of shock subsequently leads to approach towards the odour ('relief larning'). Such pain-relief learning was also the central topic of a study concerning the white gene (Chapter II.2.), which as we report does affect pain-relief as well as punishment learning in adult flies, but leaves larval odour-food learning unaffected. These studies regarding pain-relief learning provide the very first hints, in any experimental system, concerning the genetic determinants of this form of learning.}, subject = {Taufliege}, language = {en} } @phdthesis{Triphan2009, author = {Triphan, Tilman}, title = {The Central Control of Gap Climbing Behaviour in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-43666}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {In this work, a behavioural analysis of different mutants of the fruit fly Drosophila melanogaster has been carried out. Primarily, the gap climbing behaviour (Pick \& Strauss, 2005) has been assayed as it lends itself for the investigation of decision making processes and the neuronal basis of adaptive behaviour. Furthermore it shows how basic motor actions can be combined into a complex motor behaviour. Thanks to the neurogenetic methods, Drosophila melanogaster has become an ideal study object for neurobiological questions. Two different modules of climbing control have been examined in detail. For the decision making, the mutant climbing sisyphus was analysed. While wild-type flies adapt the initiation of climbing behaviour to the width of the gap and the probability for a successful transition. climbing sisyphus flies initiate climbing behaviour even at clearly insurmountable gap widths. The climbing success itself is not improved in comparison to the wild-type siblings. The mutant climbing sisyphus is a rare example of a hyperactive mutant besides many mutants that show a reduced activity. Basic capabilities in vision have been tested in an optomotor and a distance-estimation paradigm. Since they are not affected, a defect in decision making is most probably the cause of this behavioural aberration. A second module of climbing control is keeping up orientation towards the opposite side of the gap during the execution of climbing behaviour. Mutants with a structural defect in the protocerebral bridge show abnormal climbing behaviour. During the climbing attempt, the longitudinal body axis does not necessarily point into the direction of the opposite side. Instead, many climbing events are initiated at the side edge of the walking block into the void and have no chance to ever succeed. The analysed mutants are not blind. In one of the mutants, tay bridge1 (tay1) a partial rescue attempt used to map the function in the brain succeeded such that the state of the bridge was restored. That way, a visual targeting mechanism has been activated, allowing the flies to target the opposite side. When the visibility of the opposing side was reduced, the rescued flies went back to a tay1 level of directional scatter. The results are in accord with the idea that the bridge is a central constituent of the visual targeting mechanism. The tay1 mutant was also analysed in other behavioural paradigms. A reduction in walking speed and walking activity in this mutant could be rescued by the expression of UAS-tay under the control of the 007Y-GAL4 driver line, which concomitantly restores the structure of the protocerebral bridge. The separation of bridge functions from functions of other parts of the brain of tay1 was accomplished by rescuing the reduced optomotor compensation in tay1 by the mb247-GAL4>UAS-tay driver. While still having a tay1-like protocerebral bridge, mb247-GAL4 rescue flies are able to compensate at wild-type levels. An intact compensation is not depended on the tay expression in the mushroom bodies, as mushroom body ablated flies with a tay1 background and expression of UAS-tay under the control of mb247-GAL4 show wild-type behaviour as well. The most likely substrate for the function are currently unidentified neurons in the fan-shaped body, that can be stained with 007Y-GAL4 and mb247-GAL4 as well.}, subject = {Taufliege}, language = {en} } @phdthesis{Knapek2010, author = {Knapek, Stephan}, title = {Synapsin and Bruchpilot, two synaptic proteins underlying specific phases of olfactory aversive memory in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-49726}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Memory is dynamic: shortly after acquisition it is susceptible to amnesic treatments, gets gradually consolidated, and becomes resistant to retrograde amnesia (McGaugh, 2000). Associative olfactory memory of the fruit fly Drosophila melanogaster also shows these features. After a single associative training where an odor is paired with electric shock (Quinn et al., 1974; Tully and Quinn, 1985), flies form an aversive odor memory that lasts for several hours, consisting of qualitatively different components. These components can be dissociated by mutations, their underlying neuronal circuitry and susceptibility to amnesic treatments (Dubnau and Tully, 1998; Isabel et al., 2004; Keene and Waddell, 2007; Masek and Heisenberg, 2008; Xia and Tully, 2007). A component that is susceptible to an amnesic treatment, i.e. anesthesia-sensitive memory (ASM), dominates early memory, but decays rapidly (Margulies et al., 2005; Quinn and Dudai, 1976). A consolidated anesthesia-resistant memory component (ARM) is built gradually within the following hours and lasts significantly longer (Margulies et al., 2005; Quinn and Dudai, 1976). I showed here that the establishment of ARM requires less intensity of shock reinforcement than ASM. ARM and ASM rely on different molecular and/or neuronal processes: ARM is selectively impaired in the radish mutant, whereas for example the amnesiac and rutabaga genes are specifically required for ASM (Dudai et al., 1988; Folkers et al., 1993; Isabel et al., 2004; Quinn and Dudai, 1976; Schwaerzel et al., 2007; Tully et al., 1994). The latter comprise the cAMP signaling pathway in the fly, with the PKA being its supposed major target (Levin et al., 1992). Here I showed that a synapsin null-mutant encoding the evolutionary conserved phosphoprotein Synapsin is selectively impaired in the labile ASM. Further experiments suggested Synapsin as a potential downstream effector of the cAMP/PKA cascade. Similar to my results, Synapsin plays a role for different learning tasks in vertebrates (Gitler et al., 2004; Silva et al., 1996). Also in Aplysia, PKA-dependent phosphorylation of Synapsin has been proposed to be involved in regulation of neurotransmitter release and short-term plasticity (Angers et al., 2002; Fiumara et al., 2004). Synapsin is associated with a reserve pool of vesicles at the presynapse and is required to maintain vesicle release specifically under sustained high frequency nerve stimulation (Akbergenova and Bykhovskaia, 2007; Li et al., 1995; Pieribone et al., 1995; Sun et al., 2006). In contrast, the requirement of Bruchpilot, which is homologous to the mammalian active zone proteins ELKS/CAST (Wagh et al., 2006), is most pronounced in immediate vesicle release (Kittel et al., 2006). Under repeated stimulation of a bruchpilot mutant motor neuron, immediate vesicle release is severely impaired whereas the following steady-state release is still possible (Kittel et al., 2006). In line with that, knockdown of the Bruchpilot protein causes impairment in clustering of Ca2+ channels to the active zones and a lack of electron-dense projections at presynaptic terminals (T-bars). Thus, less synaptic vesicles of the readily-releasable pool are accumulated to the release sites and their release probability is severely impaired (Kittel et al., 2006; Wagh et al., 2006). First, I showed that Bruchpilot is required for aversive olfactory memory and localized the requirement of Bruchpilot to the Kenyon cells of the mushroom body, the second-order olfactory interneurons in Drosophila. Furthermore, I demonstrated that Bruchpilot selectively functions for the consolidated anesthesia-resistant memory. Since Synapsin is specifically required for the labile anesthesia sensitive memory, different synaptic proteins can dissociate consolidated and labile components of olfactory memory and two different modes of neurotransmission (high- vs. low frequency dependent) might differentiate ASM and ARM.}, subject = {Taufliege}, language = {en} } @phdthesis{Niewalda2010, author = {Niewalda, Thomas}, title = {Neurogenetic analyses of pain-relief learning in the fruit fly}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65035}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {All animals learn in order to cope with challenges imposed on them by their environment. This is true also for both larval and adult fruit flies as exemplified in pavlovian conditioning. The focus of this Thesis is on various aspects of the fruit flies learning ability. My main project deals with two types of learning which we call punishment-learning and pain-relief learning. Punishment learning happens when fruit flies are exposed to an odour which is followed by electric shock. After such training, flies have learned that that odour signals pain and consequently will avoid it in the future. If the sequence of the two stimuli is reversed such that odour follows shock, flies learn the odour as a signal for relief and will later on approach it. I first report a series of experiments investigating qualitative and parametric features of relief-learning; I find that (i) relief learning does result from true associative conditioning, (ii) it requires a relatively high number of training trials, (iii) context-shock training is ineffective for subsequent shock-odour learning. A further question is whether punishment-learning and pain-relief learning share genetic determinants. In terms of genetics, I test a synapsin mutant strain, which lacks all Synapsin protein, in punishment and relief-learning. Punishment learning is significantly reduced, and relief-learning is abolished. Pan-neuronal RNAi-mediated knock-down of Synapsin results in mutant-like phenotypes, confirming the attribution of the phenotype to lack of Synapsin. Also, a rescue of Synapsin in the mushroom body of syn97 mutants restores both punishment- and relief-learning fully, suggesting the sufficiency of Synapsin in the mushroom body for both these kinds of learning. I also elucidate the relationship between perception and physiology in adult fruit flies. I use odour-shock conditioning experiments to identify degrees of similarity between odours; I find that those similarity measures are consistent across generalization and discrimination tasks of diverse difficulty. Then, as collaborator of T. V{\"o}ller and A. Fiala, I investigate how such behavioural similarity/dissimilarity is reflected at the physiological level. I combine the behaviour data with calcium imaging data obtained by measuring the activity patterns of those odours in either the sensory neurons or the projection neurons at the antennal lobe. Our interpretation of the results is that the odours perceptual similarity is organized by antennal lobe interneurons. In another project I investigate the effect of gustatory stimuli on reflexive behaviour as well as their role as reinforcer in larval learning. Drosophila larvae greatly alter their behaviour in presence of sodium chloride. Increasing salt concentration modulates choice behaviour from weakly appetitive to strongly aversive. A similar concentration-behaviour function is also found for feeding: larval feeding is slightly enhanced in presence of low salt concentrations, and strongly decreased in the presence of high salt concentrations. Regarding learning, relatively weak salt concentrations function as appetitive reinforcer, whereas high salt concentrations function as aversive reinforcer. Interestingly, the behaviour-concentration curves are shifted towards higher concentrations from reflexive behaviour (choice behaviour, feeding) as compared to associative learning. This dissociation may reflect a different sensitivity in the respective sensory-motor circuitry.}, subject = {Taufliege}, language = {en} } @phdthesis{Schmid2010, author = {Schmid, Benjamin}, title = {Computational tools for the segmentation and registration of confocal brain images of Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51490}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Neuroanatomical data in fly brain research are mostly available as spatial gene expression patterns of genetically distinct fly strains. The Drosophila standard brain, which was developed in the past to provide a reference coordinate system, can be used to integrate these data. Working with the standard brain requires advanced image processing methods, including visualisation, segmentation and registration. The previously published VIB Protocol addressed the problem of image registration. Unfortunately, its usage was severely limited by the necessity of manually labelling a predefined set of neuropils in the brain images at hand. In this work I present novel tools to facilitate the work with the Drosophila standard brain. These tools are integrated in a well-known open-source image processing framework which can potentially serve as a common platform for image analysis in the neuroanatomical research community: ImageJ. In particular, a hardware-accelerated 3D visualisation framework was developed for ImageJ which extends its limited 3D visualisation capabilities. It is used for the development of a novel semi-automatic segmentation method, which implements automatic surface growing based on user-provided seed points. Template surfaces, incorporated with a modified variant of an active surface model, complement the segmentation. An automatic nonrigid warping algorithm is applied, based on point correspondences established through the extracted surfaces. Finally, I show how the individual steps can be fully automated, and demonstrate its application for the successful registration of fly brain images. The new tools are freely available as ImageJ plugins. I compare the results obtained by the introduced methods with the output of the VIB Protocol and conclude that our methods reduce the required effort five to ten fold. Furthermore, reproducibility and accuracy are enhanced using the proposed tools.}, subject = {Taufliege}, language = {en} }