@phdthesis{Roeschert2021, author = {R{\"o}schert, Isabelle}, title = {Aurora-A prevents transcription-replication conflicts in MYCN-amplified neuroblastoma}, doi = {10.25972/OPUS-24303}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243037}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Neuroblastoma is the most abundant, solid, extracranial tumor in early childhood and the leading cause of cancer-related childhood deaths worldwide. Patients with high-risk neuroblastoma often show MYCN-amplification and elevated levels of Aurora-A. They have a low overall survival and despite multimodal therapy options a poor therapeutic prognosis. MYCN-amplified neuroblastoma cells depend on Aurora-A functionality. Aurora-A stabilizes MYCN and prevents it from proteasomal degradation by competing with the E3 ligase SCFFBXW7. Interaction between Aurora-A and MYCN can be observed only in S phase of the cell cycle and activation of Aurora-A can be induced by MYCN in vitro. These findings suggest the existence of a profound interconnection between Aurora-A and MYCN in S phase. Nevertheless, the details remain elusive and were investigated in this study. Fractionation experiments show that Aurora-A is recruited to chromatin in S phase in a MYCN-dependent manner. Albeit being unphosphorylated on the activating T288 residue, Aurora-A kinase activity was still present in S phase and several putative, novel targets were identified by phosphoproteomic analysis. Particularly, eight phosphosites dependent on MYCN-activated Aurora-A were identified. Additionally, phosphorylation of serine 10 on histone 3 was verified as a target of this complex in S phase. ChIP-sequencing experiments reveal that Aurora-A regulates transcription elongation as well as histone H3.3 variant incorporation in S phase. 4sU-sequencing as well as immunoblotting demonstrated that Aurora-A activity impacts splicing. PLA measurements between the transcription and replication machinery revealed that Aurora-A prevents the formation of transcription-replication conflicts, which activate of kinase ATR. Aurora-A inhibitors are already used to treat neuroblastoma but display dose-limiting toxicity. To further improve Aurora-A based therapies, we investigated whether low doses of Aurora-A inhibitor combined with ATR inhibitor could increase the efficacy of the treatment albeit reducing toxicity. The study shows that the combination of both drugs leads to a reduction in cell growth as well as an increase in apoptosis in MYCN-amplified neuroblastoma cells, which is not observable in MYCN non-amplified neuroblastoma cells. This new approach was also tested by a collaboration partner in vivo resulting in a decrease in tumor burden, an increase in overall survival and a cure of 25\% of TH-MYCN mice. These findings indicate indeed a therapeutic window for targeting MYCN-amplified neuroblastoma.}, subject = {Neuroblastom}, language = {en} } @article{MartinSchlosserFurtwaengleretal.2021, author = {Mart{\´i}n, Ovidio Jim{\´e}nez and Schlosser, Andreas and Furtw{\"a}ngler, Rhoikos and Wegert, Jenny and Gessler, Manfred}, title = {MYCN and MAX alterations in Wilms tumor and identification of novel N-MYC interaction partners as biomarker candidates}, series = {Cancer Cell International}, volume = {21}, journal = {Cancer Cell International}, doi = {10.1186/s12935-021-02259-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265542}, year = {2021}, abstract = {Background Wilms tumor (WT) is the most common renal tumor in childhood. Among others, MYCN copy number gain and MYCN P44L and MAX R60Q mutations have been identified in WT. MYCN encodes a transcription factor that requires dimerization with MAX to activate transcription of numerous target genes. MYCN gain has been associated with adverse prognosis in different childhood tumors including WT. The MYCN P44L and MAX R60Q mutations, located in either the transactivating or basic helix-loop-helix domain, respectively, are predicted to be damaging by different pathogenicity prediction tools, but the functional consequences remain to be characterized. Methods We screened a large cohort of unselected WTs for MYCN and MAX alterations. Wild-type and mutant protein function were characterized biochemically, and we analyzed the N-MYC protein interactome by mass spectrometric analysis of N-MYC containing protein complexes. Results Mutation screening revealed mutation frequencies of 3\% for MYCN P44L and 0.9\% for MAX R60Q that are associated with a higher risk of relapse. Biochemical characterization identified a reduced transcriptional activation potential for MAX R60Q, while the MYCN P44L mutation did not change activation potential or protein stability. The protein interactome of N-MYC-P44L was likewise not altered as shown by mass spectrometric analyses of purified N-MYC complexes. Nevertheless, we could identify a number of novel N-MYC partner proteins, e.g. PEG10, YEATS2, FOXK1, CBLL1 and MCRS1, whose expression is correlated with MYCN in WT samples and several of these are known for their own oncogenic potential. Conclusions The strongly elevated risk of relapse associated with mutant MYCN and MAX or elevated MYCN expression corroborates their role in WT oncogenesis. Together with the newly identified co-expressed interactors they expand the range of potential biomarkers for WT stratification and targeting, especially for high-risk WT.}, language = {en} }