@article{WuZhaoHochreinetal.2023, author = {Wu, Hao and Zhao, Xiufeng and Hochrein, Sophia M. and Eckstein, Miriam and Gubert, Gabriela F. and Kn{\"o}pper, Konrad and Mansilla, Ana Maria and {\"O}ner, Arman and Doucet-Ladev{\`e}ze, Remi and Schmitz, Werner and Ghesqui{\`e}re, Bart and Theurich, Sebastian and Dudek, Jan and Gasteiger, Georg and Zernecke, Alma and Kobold, Sebastian and Kastenm{\"u}ller, Wolfgang and Vaeth, Martin}, title = {Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-42634-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358052}, year = {2023}, abstract = {T cell exhaustion is a hallmark of cancer and persistent infections, marked by inhibitory receptor upregulation, diminished cytokine secretion, and impaired cytolytic activity. Terminally exhausted T cells are steadily replenished by a precursor population (Tpex), but the metabolic principles governing Tpex maintenance and the regulatory circuits that control their exhaustion remain incompletely understood. Using a combination of gene-deficient mice, single-cell transcriptomics, and metabolomic analyses, we show that mitochondrial insufficiency is a cell-intrinsic trigger that initiates the functional exhaustion of T cells. At the molecular level, we find that mitochondrial dysfunction causes redox stress, which inhibits the proteasomal degradation of hypoxia-inducible factor 1α (HIF-1α) and promotes the transcriptional and metabolic reprogramming of Tpex cells into terminally exhausted T cells. Our findings also bear clinical significance, as metabolic engineering of chimeric antigen receptor (CAR) T cells is a promising strategy to enhance the stemness and functionality of Tpex cells for cancer immunotherapy.}, language = {en} } @article{DaeullaryImdahlDietrichetal.2023, author = {D{\"a}ullary, Thomas and Imdahl, Fabian and Dietrich, Oliver and Hepp, Laura and Krammer, Tobias and Fey, Christina and Neuhaus, Winfried and Metzger, Marco and Vogel, J{\"o}rg and Westermann, Alexander J. and Saliba, Antoine-Emmanuel and Zdzieblo, Daniela}, title = {A primary cell-based in vitro model of the human small intestine reveals host olfactomedin 4 induction in response to Salmonella Typhimurium infection}, series = {Gut Microbes}, volume = {15}, journal = {Gut Microbes}, number = {1}, doi = {10.1080/19490976.2023.2186109}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350451}, year = {2023}, abstract = {Infection research largely relies on classical cell culture or mouse models. Despite having delivered invaluable insights into host-pathogen interactions, both have limitations in translating mechanistic principles to human pathologies. Alternatives can be derived from modern Tissue Engineering approaches, allowing the reconstruction of functional tissue models in vitro. Here, we combined a biological extracellular matrix with primary tissue-derived enteroids to establish an in vitro model of the human small intestinal epithelium exhibiting in vivo-like characteristics. Using the foodborne pathogen Salmonella enterica serovar Typhimurium, we demonstrated the applicability of our model to enteric infection research in the human context. Infection assays coupled to spatio-temporal readouts recapitulated the established key steps of epithelial infection by this pathogen in our model. Besides, we detected the upregulation of olfactomedin 4 in infected cells, a hitherto unrecognized aspect of the host response to Salmonella infection. Together, this primary human small intestinal tissue model fills the gap between simplistic cell culture and animal models of infection, and shall prove valuable in uncovering human-specific features of host-pathogen interplay.}, language = {en} }