@phdthesis{Dellermann2018, author = {Dellermann, Theresa}, title = {NHC-stabilisierte Bor-Bor-Mehrfachbindungssysteme - Darstellung und Reaktivit{\"a}t}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146345}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Im Rahmen dieser Arbeit war es m{\"o}glich, eine Vielzahl NHC-stabilisierter Tetrabromdiboran-Addukte zu synthetisieren und mithilfe von zwei bzw. vier Reduktions{\"a}quivalenten zu reduzieren. Dies f{\"u}hrte zur Bildung neuartiger Dibromdiborene bzw. Diborin-Verbindungen, welche infolgedessen charakterisiert wurden. Der Einfluss des Carbens auf die jeweilige Struktur und Elektronik der synthetisierten Verbindungen war hierbei von besonderem Interesse. Im Fall der Diborine gelang es neben den beiden bereits literaturbekannten Verbindungen XXIII und XXXII drei neue Vertreter mit einer B≡B-Dreifachbindung (7, 8 und 9) darzustellen. Aufgrund der Verwendung von ges{\"a}ttigten Carbenen wurden die spektroskopischen und strukturellen Eigenschaften der Verbindungen soweit modifiziert, dass sie zwischen denen mit einer isolierten Dreifachbindung (B2IDip2 (XXIII) und B2IDep2 (XXXII)) und der mit Kumulencharakter (B2CAAC2 (XXXIV)) eingeordnet werden k{\"o}nnen. Neben der Charakterisierung neuartiger Verbindungen mit Bor-Bor-Dreifachbindungscharakter konnten auch zahlreiche Reaktivit{\"a}tsstudien durchgef{\"u}hrt werden. So verdeutlichte sich der strukturelle und elektronische Unterschied der Diborine vor allem am Beispiel der Reaktivit{\"a}t gegen{\"u}ber CO (Schema 42). W{\"a}hrend f{\"u}r B2IDip2 (XXIII) der Reaktionsverlauf {\"u}ber das Intermediat XXV zum Bis(boralacton) XXVI reagierte, konnte f{\"u}r die Diborine 7 und 8 prim{\"a}r die Bildung des jeweiligen Bis(boraketens) (16 und 18) beobachtet werden. Die Bindungssituation dieser Zwischenstufen wird vor allem durch die π-R{\"u}ckbindungen der Boratome in die CO-Bindung gepr{\"a}gt, welche zu einer Schw{\"a}chung dieser f{\"u}hren und sowohl in den Festk{\"o}rperstrukturen als auch in den Schwingungsspektren verdeutlicht wird. Die weitere Umsetzung zu den entsprechenden Bis(boralactonen) 17 und 19 erfolgte im Anschluss je nach Substituent bei Raumtemperatur (16) oder durch Heizen der Boraketen-Zwischenstufe (18). Mithilfe quantenmechanischer Betrachtung konnte die Ursache der unterschiedlichen Reaktionsverl{\"a}ufe n{\"a}her erl{\"a}utert werden, auch unter Einbeziehung des Diborakumulens XXXIV, welches mit {\"U}berschuss an CO auch bei hohen Temperaturen lediglich zur Bildung des Bis(boraketens) (XXXV) f{\"u}hrt. Dies zeigt, dass aufgrund der unterschiedlichen Reaktionsbarrieren der jeweiligen Diborine bzw. des Diborakumulens mit CO die Bildung des Ketens bzw. anschließend des Bis(boralactons) verschieden stark bevorzugt wird. F{\"u}r B2IDip2 (XXIII) wird deshalb aufgrund der hohen freien Gibbs-Energie, welche bei der Bildung des Bis(boralactons) entsteht, im ersten Schritt keine Bildung des IDip-stabilisierten Bis(boraketens) beobachtet und f{\"u}r B2CAAC2 (XXXIV) aufgrund von nahezu keiner Energiegewinnung im zweiten Schritt lediglich XXXV gebildet. Die freien Gibbs-Energien beider Reaktionsschritte der Umsetzungen von B2SIDip2 (7) und B2SIDep2 (8) mit CO ordnen sich zwischen den oben beschriebenen Extrema ein. Einen Einfluss des Carbens auf die Reaktivit{\"a}t zeigte auch die Umsetzung mit Wasserstoffgas. W{\"a}hrend bei XXIII, XXXII und 7 keine Reaktionen beobachtet werden konnten, verlief diese bei 8 und XXXIV unter einer 1,2-Addition des H2-Molek{\"u}ls an die B-B-Bindung und Bildung der jeweiligen Dihydrodiborene 21 (B2H2SIDep2) und XXXVIII (B2H2CAAC2). Neben der Reaktivit{\"a}t gegen{\"u}ber CO und H2 wurden auch Reaktionen beschrieben, welche zu einer Insertion einer in-situ-gebildeten Borylen-Spezies f{\"u}hrten. Diese sind die Umsetzungen von B2IDip2 (XXIII) mit CO-Quellen oder der Br{\o}nstedt-S{\"a}ure Triethylammonium(tetraphenyl)borat. In beiden F{\"a}llen kam es im Laufe der Reaktion zur Insertion eines Borfragments in die CH-Bindung des Isopropylrestes und zur Bildung der Boracyclen 20 (B2IDip2CO) und 25 ([B2IDip2H][BPh4]). Daneben konnte eine {\"a}hnliche Beobachtung bei der Umsetzung des SIDep-stabilisierten Diborins 8 mit Isonitrilen gemacht werden. Hierbei insertierte bei der Reaktion mit Metyhlisonitril ein Borfragment in den benachbarten Imidazolring unter Ausbildung eines Sechsrings. Gleichzeitig konnte eine CH-Aktivierung des Ethylrestes des Dep-Substituenten beobachtet werden. Bei der analogen Umsetzung mit tert-Butylisonitril wurde neben der einfachen auch die zweifache Insertion beider Borzentren beobachtet. Die Reaktivit{\"a}t gegen{\"u}ber Chalkogenen und Chalkogenverbindungen stellte einen weiteren, zentralen Aspekt dieser Arbeit dar. Die Umsetzung von B2IDip2 mit elementarem Schwefel und Selen f{\"u}hrte dabei zur Spaltung der B≡B-Bindung durch reduktive Insertion von drei Chalkogenbr{\"u}cken und Bildung der entsprechenden Pentachalkogenverbindungen 26 und 27. Die analogen Umsetzungen des Diborins 7 mit Selen f{\"u}hrte ebenfalls zur Bildung einer Pentachalkogenverbindung (29). Da derartige Verbindung in der Literatur bislang nicht bekannt sind, sollte auch deren Reaktivit{\"a}t exemplarisch an 27 untersucht werden. Dabei zeigte sich, dass die Verbindung stabil unter photolytischen Bedingungen ist und sich bei thermischer Behandlung erst nach mehreren Tagen zersetzt. Die Umsetzung mit Triphenylphosphan oder elementarem Natrium zur Entfernung von Selenfragmenten oder mit Triphenylphosphanselenid zur Addition weiterer Seleneinheiten zeigten keine Reaktionen. Lediglich die Umsetzung mit zwei {\"A}quivalenten Natriumnaphthalid f{\"u}hrte zur erfolgreichen Darstellung des Dimers 28. Im Gegensatz dazu lieferte die Reaktion des Diborins 8 mit elementarem Selen bereits ein anderes Strukturmotiv (30), in welchem sechs Selenatome in Form von ein-, zwei und dreiatomigen Henkeln zwischen die Boratome insertierten. Durch Umsetzung mit Triphenylphosphan deuteten erste Reaktionsversuche darauf hin, dass es m{\"o}glich ist, selektiv ein Selenfragment aus der dreiatomigen Selenbr{\"u}cke zu entfernen und die entsprechende Pentachalkogenverbindung 31 zu generieren. Reaktivit{\"a}tsstudien der Diborine XXIII, 7 und 8 gegen{\"u}ber Diphenyldisulfid und -selenid als auch gegen{\"u}ber Isopropylthiol f{\"u}hrten in allen F{\"a}llen zur 1,2-Addition an die B≡B-Bindung unter Bildung der Diborene 32 bis 36 bzw. 42 und 43. Im Gegensatz dazu kam es bei der Reaktion von XXIII mit Diphenylditellurid zur Bildung eines salzartigen Komplexes 37, in welchem ein Phenyltellurireniumkation die B≡B-Bindung verbr{\"u}ckte und das entsprechende Phenyltellurid als Gegenion fungierte. Durch den Einsatz von para-substituierten Diphenylditelluriden konnten zwei weitere Verbindungen (38 und 39) dargestellt werden. Dabei zeigte der para-Substituent jedoch nur einen geringen Einfluss auf die elektronische Struktur der gebildeten Produkte. Die Reaktion von Diborin 8 mit Diphenylditellurid zeigte neben der Bildung des salzartigen Komplexes 40 auch die Entstehung des 1,2-Additionsproduktes 41, was vermutlich wie bereits bei der Reaktion mit elementarem Selen auf sterische Effekte zur{\"u}ckzuf{\"u}hren ist (Schema 45). Aufgrund der besonderen Bindungssituation in den Komplexen 37 bis 40 wurden diese eingehender untersucht. Die Auswertung der R{\"o}ntgenstrukturanalyse, Raman-Spektroskopie, 11B-NMR-Spinkopplungsexperimente sowie der quantenmechanischen Rechnungen ergab dabei Hinweise auf eine Koordinationsverbindung nach dem Dewar-Chatt-Duncanson-Bindungsmodell. Weitere Reaktivit{\"a}tsstudien v.a. des IDip-stabilisierten Diborins (XXIII) besch{\"a}ftigten sich mit der Synthese von π-Komplexverbindungen durch Reaktionen von XXIII mit Alkalimetallkationen in der Ligandensph{\"a}re schwach koordinierender Anionen mit Kupfer(I)-Verbindungen. Die Bildung sogenannter Kation-π-Komplexe des Diborins mit Lithium bzw. Natrium gelang durch die Umsetzung von B2IDip2 (XXIII) mit je zwei {\"A}quivalenten Lithium bzw. Natriumtetrakis(3,5-dichlorphenyl)borat quantitativ unter Bildung von 46 und 47 als unl{\"o}sliche, violette Feststoffe. Die in der Kristallstruktur ersichtliche Bindungssituation zeigt die Einkapselung der jeweiligen Kationen durch das B2-Fragment des Diborins sowie der Arylreste der Ligandensph{\"a}re, die sich infolgeder Komplexierung ekliptisch zueinander anordnen. Aufgrund der ungew{\"o}hnlichen Bindungssituation wurden theoretische Studien aufbauend auf den aus den Kristallstrukturen und den aus spektroskopischen Messungen erhaltenen Daten angefertigt. Diese beweisen eine rein elektrostatische Wechselwirkung der Kationen mit der noch intakten B≡B-Bindung des Diborins. Auch f{\"u}r die Diborine 7 und 8 konnten am Beispiel des Natriumtetrakis(3,5-dichlorphenyl)borats die Komplexe 48 ([B2SIDip2Na2][BArCl4]) und 49 ([B2SIDep2Na2][BArCl4]) erfolgreich dargestellt werden. Dies beweist, dass in den SIDip- und SIDep-substituierten Diborinen noch gen{\"u}gend Elektronendichte auf der B-B-Bindung lokalisiert ist, um derartige π-Wechselwirkungen auszubilden. Die Reaktivit{\"a}t des Diborins XXIII gegen{\"u}ber Kupfer(I)-Verbindungen wurde bereits von Dr. Jan Mies im Zuge seiner Dissertation untersucht. In dieser Arbeit ist es nun gelungen, weitere Komplexe mit Kupfer(I)-alkinylen (50 und 51) darzustellen. Dar{\"u}ber hinaus war es m{\"o}glich, eine alternative Syntheseroute zur Darstellung des dreikernigen Kupfer(I)-chlorid-Komplexes XXVII zu entwickeln sowie den entsprechenden Zweikerner 52 darzustellen. Die Verbindungen XXVII, 52 und XXVIII wurden im Anschluss in Kooperation mit der Gruppe um Dr. Andreas Steffen auf ihre photophysikalischen Eigenschaften hin untersucht.Dabei zeigte sich, dass alle drei Verbindungen aufgrund der langen Lebenszeiten ihrer angeregten Zust{\"a}nde phosphoreszieren, die Quantenausbeute der Phosphoreszenz jedoch stark von der Verbindung abh{\"a}ngig ist. W{\"a}hrend der dreikernige Kupfer(I)-Komplex XXVII bereits in L{\"o}sung eine Quantenausbeute von 29 \% aufwies, war eine Bestimmung der Quantenausbeute in L{\"o}sung f{\"u}r B2IDip2(CuC2TMS)2 (XXVIII) aufgrund der schwachen Emission nicht m{\"o}glich. Die Ursache des unterschiedlichen Emissionsverhaltens konnte mittels Betrachtung von Absorptions- und Anregungsspektren erkl{\"a}rt werden. F{\"u}r B2IDip2(CuCl)3 sind die beiden Spektren in L{\"o}sung nahezu identisch. Im Gegensatz dazu weisen die beiden Zweikerner 52 und XXVIII ein vom Absorptionsspektrum verschiedenes Anregungsspektrum auf, was darauf schließen l{\"a}sst, dass es zu Konformations{\"a}nderungen im angeregten Zustand kommt, welche die Emission ausl{\"o}scht. TheoretischeStudien best{\"a}tigen f{\"u}r 52, dass die Barriere zwischen zwei Konformeren, in denen die Kupferfragmente linear bzw. orthogonal angeordnet sind, lediglich 4.77 kcal/mol betr{\"a}gt und bekr{\"a}ftigen damit die vermutete Ursache der schwachen Emission. Ein zweites Thema dieser Arbeit besch{\"a}ftigte sich mit der Darstellung und Untersuchung neuartiger Dibromdiborene, welche im Zuge der Diborin-Synthese beobachtet werden konnten. Dabei gelang es neben dem bereits literaturbekannten IDip-stabilisierten Dibromdiboren (XXIV) noch sechs weitere Vertreter dieser Verbindungsklasse darzustellen (10-15). Auch hier konnte ein Einfluss der Carbenliganden auf die strukturellen und elektronischen Eigenschaften beobachtet werden. Die Reaktivit{\"a}t der Dibromdiborene wurde in einigen Testreaktionen untersucht. Dabei zeigte sich, dass im Hinblick auf ihr Oxidationsverhalten die literaturbekannte Darstellung von Monokationen (53 [B2Br2IDip2][BArF4] und 54 [B2Br2IDep2][BArF4]) nachempfunden werden konnte. Versuche zur Bromsubstitution zeigten durch Umsetzung mit BuLi den Austausch der Bromid-Liganden durch Butylgruppen, jedoch bildeten sich aufgrund von Umlagerungen anstelle der erwarteten Diborene die kondensierten Ringsysteme 56-58.}, subject = {Bor}, language = {de} }