@phdthesis{Choli2013, author = {Choli, Morwan}, title = {Hybridmethoden zur Reduzierung der spezifischen Absorptionsrate f{\"u}r neuroradiologische MRT-Untersuchungen an Hochfeldsystemen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-100023}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die klinische Magnetresonanztomografie (MRT) operiert meist bei einer Magnetfeldst{\"a}rke von 1,5 Tesla (T). Es halten jedoch immer mehr 3T MRT-Systeme Einzug im klinischen Alltag und seit kurzem auch 7T Ganzk{\"o}rper-MRT-Systeme in die Grundlagenforschung. H{\"o}here Magnetfeldst{\"a}rken f{\"u}hren grunds{\"a}tzlich zum einem verbesserten Signal-zu-Rausch- Verh{\"a}ltnis, welches sich gewinnbringend in eine erh{\"o}hte Ortsaufl{\"o}sung oder schnellere Bildaufnahme {\"a}ußert. Ein Nachteil ist aber die dabei im Patienten deponierte Hochfrequenz-Energie (HF-Energie), welche quadratisch mit ansteigender Feldst{\"a}rke zusammenh{\"a}ngt. Charakterisiert wird diese durch die spezifische Absorptionsrate (SAR) und ist durch vorgegebene gesetzliche Grenzwerte beschr{\"a}nkt. Moderne, SAR-intensive MRT-Techniken (z.B. Multispinecho-Verfahren) sind bereits bei 1,5T nahe den zul{\"a}ssigen SAR-Grenzwerten und somit nicht unver{\"a}ndert auf Hochfeld-Systeme {\"u}bertragbar. In dieser Arbeit soll das Potential modularer Hybrid-MRT-Techniken genutzt werden, um das SAR bei besonders SAR-intensiven MRT-Verfahren ohne signifikante Einbußen in der Bildqualit{\"a}t erheblich zu verringern. Die Hybrid-Techniken sollen in Verbindung mit zus{\"a}tzlichen Methoden der SAR-Reduzierung den breiteren Einsatz SAR-intensiver MRT-Techniken an hohen Magnetfeldern erm{\"o}glichen. Ziel dieser Arbeit ist es, routinef{\"a}hige und SAR-reduzierte MRT-Standard-Protokolle f{\"u}r neuroanatomische Humanuntersuchungen mit r{\"a}umlicher H{\"o}chstaufl{\"o}sung bei Magnetfeldern von 3T und 7T zu etablieren.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Lother2013, author = {Lother, Steffen Reiner}, title = {Entwicklung eines 3D MR-Tomographen zur Erdfeld- und multimodalen MR-MPI-Bildgebung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-99181}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Das Ziel dieser Arbeit war die Entwicklung und die Anfertigung eines 3D Erdfeld-NMR Tomographen, um damit die ben{\"o}tigte Technik der MR eines MR-MPI-Tomographen am Lehrstuhl zu etablieren. Daraufhin wurden alle n{\"o}tigen Komponenten f{\"u}r ein komplettes 3D Erdfeld-NMR-System entwickelt, gebaut und getestet. Mit diesem Wissen wurde in enger Zusammenarbeit mit der MPI-Arbeitsgruppe am Lehrstuhl ein multimodaler MR-MPI-Tomograph angefertigt und die prinzipielle Machbarkeit der technischen Kombination dieser zwei Modalit{\"a}ten (MRT/MPI) in einer einzigen Apparatur gezeigt. Auf diesem Entwicklungsweg sind zus{\"a}tzlich innovative Systemkomponenten entstanden, wie der Bau eines neuen Pr{\"a}polarisationssystems, mit dem das Pr{\"a}polarisationsfeld kontrolliert und optimiert abgeschaltet werden kann. Des Weiteren wurde ein neuartiges 3D Gradientensystem entwickelt, das parallel und senkrecht zum Erdmagnetfeld ausgerichtet werden kann, ohne die Bildgebungseigenschaften zu verlieren. Hierf{\"u}r wurde ein 3D Standard-Gradientensystem mit nur einer weiteren Spule, auf insgesamt vier Gradientenspulen erweitert. Diese wurden entworfen, gefertigt und anhand von Magnetfeldkarten ausgemessen. Anschließend konnten diese Ergebnisse mit der hier pr{\"a}sentierten Theorie und den Simulationsergebnissen {\"u}bereinstimmend verglichen werden. MPI (Magnetic Particle Imaging) ist eine neue Bildgebungstechnik mit der nur Kontrastmittel detektiert werden k{\"o}nnen. Das hat den Vorteil der direkten und eindeutigen Detektion von Kontrastmitteln, jedoch fehlt die Hintergrundinformation der Probe. Wissenschaftliche Arbeiten prognostizieren großes Potential, die Hintergrundinformationen der MRT mit den hochaufl{\"o}senden Kontrastmittelinformationen mittels MPI zu kombinieren. Jedoch war es bis jetzt nicht m{\"o}glich, diese beiden Techniken in einer einzigen Apparatur zu etablieren. Mit diesem Prototyp konnte erstmalig eine MR-MPI-Messung ohne Probentransfer durchgef{\"u}hrt und die empfindliche Lokalisation von Kontrastmittel mit der {\"U}berlagerung der notwendigen Hintergrundinformation der Probe gezeigt werden. Dies ist ein Meilenstein in der Entwicklung der Kombination von MRT und MPI und bringt die Vision eines zuk{\"u}nftigen, klinischen, multimodalen MR-MPI-Tomographen ein großes St{\"u}ck n{\"a}her.}, subject = {NMR-Spektroskopie}, language = {de} } @phdthesis{Zeller2013, author = {Zeller, Mario}, title = {Dichtegewichtete Magnetresonanz-Bildgebung mit Multi-Echo-Sequenzen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-84142}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Das Signal-zu-Rausch-Verh{\"a}ltnis (SNR) stellt bei modernen Bildgebungstechniken in der Magnetresonanz-Tomographie heutzutage oftmals die entscheidende Limitation dar. Eine Verbesserung durch Modifikation der Hardware ist kostspielig und f{\"u}hrt meistens zu einer Verst{\"a}rkung anderer Probleme, wie zum Beispiel erh{\"o}hte Energiedeposition ins Gewebe. Im Gegensatz dazu ist Dichtegewichtung eine Methode, die eine SNR-Erh{\"o}hung durch Modifikation der Aufnahmetechnik erm{\"o}glicht. In der MR-Bildgebung erfolgt oftmals eine retrospektive Filterung des aufgenommenen Signalverlaufs, beispielsweise zur Artefaktreduktion. Damit einhergehend findet eine Ver{\"a}nderung der Modulationstransferfunktion (MTF) bzw. ihrer Fouriertransformierten, der r{\"a}umlichen Antwortfunktion (SRF), statt. Optimales SNR wird nach dem Matched Filter-Theorem erzielt, wenn die nachtr{\"a}gliche Filterung dem aufgenommenen Signalverlauf proportional ist. Dies steht dem Ziel der Artefaktreduktion entgegen. Bei Dichtegewichtung steht durch nicht-kartesische Abtastung des k-Raums mit der k-Raum-Dichte ein zus{\"a}tzlicher Freiheitsgrad zur Verf{\"u}gung. Dieser erm{\"o}glicht es, im Falle eines konstanten Signalverlaufs eine gew{\"u}nschte MTF ohne Filterung zu erreichen. Bei ver{\"a}nderlichem Signalverlauf kann ein SNR Matched Filter angewendet werden, dessen negative Einfl{\"u}sse auf die MTF durch Dichtegewichtung kompensiert werden. Somit erm{\"o}glicht Dichtegewichtung eine vorgegebene MTF und gleichzeitig ein optimales SNR. In der vorliegenden Arbeit wurde Dichtegewichtung erstmals bei den schnellen Multi-Echo-Sequenzen Turbo-Spin-Echo und Echoplanar-Bildgebung (EPI) angewendet. Im Gegensatz zu bisherigen Implementierungen muss hier der Signalabfall durch T2- bzw. T2*-Relaxation ber{\"u}cksichtigt werden. Dies f{\"u}hrt dazu, dass eine prospektiv berechnete dichtegewichtete Verteilung nur bei einer Relaxationszeit optimal ist. Bei Geweben mit abweichenden Relaxationszeiten k{\"o}nnen sich wie auch bei den kartesischen Varianten dieser Sequenzen {\"A}nderungen an SRF und SNR ergeben. Bei dichtegewichteter Turbo-Spin-Echo-Bildgebung des Gehirns konnte mit den gew{\"a}hlten Sequenzparametern ein SNR-Vorteil von 43 \% gegen{\"u}ber der kartesischen Variante erzielt werden. Die Akquisition wurde dabei auf die T2-Relaxationszeit von weißer Substanz optimiert. Da die meisten Gewebe im Gehirn eine {\"a}hnliche Relaxationszeit aufweisen, blieb der visuelle Gesamteindruck identisch zur kartesischen Bildgebung. Der SNR-Gewinn konnte in der dichtegewichteten Implementierung zur Messzeithalbierung genutzt werden. Dichtegewichtete EPI weist eine hohe Anf{\"a}lligkeit f{\"u}r geometrische Verzerrungen, welche durch Inhomogenit{\"a}ten des Hauptmagnetfeldes verursacht werden, auf. Die Verzerrungen konnten erfolgreich mit einer Conjugate Phase-Methode korrigiert werden. Dazu muss die r{\"a}umliche Verteilung der Feldinhomogenit{\"a}ten bekannt sein. Dazu ist zus{\"a}tzlich zur eigentlichen EPI-Aufnahme die zeitaufwendige Aufnahme einer sogenannten Fieldmap erforderlich. Im Rahmen dieser Arbeit konnte eine Methode entwickelt werden, welche die zur Erlangung einer Fieldmap notwendige Aufnahmedauer auf wenige Sekunden reduziert. Bei dieser Art der Fieldmap-Aufnahme m{\"u}ssen jedoch durch Atmung hervorgerufene Effekte auf die Bildphase ber{\"u}cksichtigt werden. Die Fieldmap-Genauigkeit kann durch Aufnahme unter Atempause, Mittelung oder retrospektiver Phasenkorrektur erh{\"o}ht werden. F{\"u}r die gew{\"a}hlten EPI-Sequenzparameter wurde mit Dichtegewichtung gegen{\"u}ber der kartesischen Variante ein SNR-Gewinn von 14 \% erzielt. Anhand einer funktionellen MRT (fMRI)-Fingertapping-Studie konnte demonstriert werden, dass die SNR-Steigerung auch zu einer signifikant erh{\"o}hten Aktivierungsdetektion in Teilen der Hirnareale f{\"u}hrt, die bei der Fingerbewegung involviert sind. Die Verwendung von zus{\"a}tzlicher EPI-Phasenkorrektur und iterativer Optimierung der dichtegewichteten k-Raum-Abtastung f{\"u}hrt zu weiteren Verbesserungen der dichtegewichteten Bildgebung mit Multi-Echo-Sequenzen.}, subject = {Kernspintomografie}, language = {de} }