@phdthesis{Pollinger2013, author = {Pollinger, Felix}, title = {Bewertung und Auswirkungen der Simulationsg{\"u}te f{\"u}hrender Klimamoden in einem Multi-Modell Ensemble}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97982}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Der rezente und zuk{\"u}nftige Anstieg der atmosph{\"a}rischen Treibhausgaskonzentration bedeutet f{\"u}r das terrestrische Klimasystem einen grundlegenden Wandel, der f{\"u}r die globale Gesellschaft schwer zu bew{\"a}ltigende Aufgaben und Herausforderungen bereit h{\"a}lt. Eine effektive, r{\"u}hzeitige Anpassung an diesen Klimawandel profitiert dabei enorm von m{\"o}glichst genauen Absch{\"a}tzungen k{\"u}nftiger Klima{\"a}nderungen. Das geeignete Werkzeug hierf{\"u}r sind Gekoppelte Atmosph{\"a}re Ozean Modelle (AOGCMs). F{\"u}r solche Fragestellungen m{\"u}ssen allerdings weitreichende Annahmen {\"u}ber die zuk{\"u}nftigen klimarelevanten Randbedingungen getroffen werden. Individuelle Fehler dieser Klimamodelle, die aus der nicht perfekten Abbildung der realen Verh{\"a}ltnisse und Prozesse resultieren, erh{\"o}hen die Unsicherheit langfristiger Klimaprojektionen. So unterscheiden sich die Aussagen verschiedener AOGCMs im Hinblick auf den zuk{\"u}nftigen Klimawandel insbesondere bei regionaler Betrachtung, deutlich. Als Absicherung gegen Modellfehler werden {\"u}blicherweise die Ergebnisse mehrerer AOGCMs, eines Ensembles an Modellen, kombiniert. Um die Absch{\"a}tzung des Klimawandels zu pr{\"a}zisieren, wird in der vorliegenden Arbeit der Versuch unternommen, eine Bewertung der Modellperformance der 24 AOGCMs, die an der dritten Phase des Vergleichsprojekts f{\"u}r gekoppelte Modelle (CMIP3) teilgenommen haben, zu erstellen. Auf dieser Basis wird dann eine nummerische Gewichtung f{\"u}r die Kombination des Ensembles erstellt. Zun{\"a}chst werden die von den AOGCMs simulierten Klimatologien f{\"u}r einige grundlegende Klimaelemente mit den betreffenden klimatologien verschiedener Beobachtungsdatens{\"a}tze quantitativ abgeglichen. Ein wichtiger methodischer Aspekt hierbei ist, dass auch die Unsicherheit der Beobachtungen, konkret Unterschiede zwischen verschiedenen Datens{\"a}tzen, ber{\"u}cksichtigt werden. So zeigt sich, dass die Aussagen, die aus solchen Ans{\"a}tzen resultieren, von zu vielen Unsicherheiten in den Referenzdaten beeintr{\"a}chtigt werden, um generelle Aussagen zur Qualit{\"a}t von AOGCMs zu treffen. Die Nutzung der K{\"o}ppen-Geiger Klassifikation offenbart jedoch, dass die prinzipielle Verteilung der bekannten Klimatypen im kompletten CMIP3 in vergleichbar guter Qualit{\"a}t reproduziert wird. Als Bewertungskriterium wird daher hier die F{\"a}higkeit der AOGCMs die großskalige nat{\"u}rliche Klimavariabilit{\"a}t, konkret die hochkomplexe gekoppelte El Ni{\~n}o-Southern Oscillation (ENSO), realistisch abzubilden herangezogen. Es kann anhand verschiedener Aspekte des ENSO-Ph{\"a}nomens gezeigt werden, dass nicht alle AOGCMs hierzu mit gleicher Realit{\"a}tsn{\"a}he in der Lage sind. Dies steht im Gegensatz zu den dominierenden Klimamoden der Außertropen, die modell{\"u}bergreifend {\"u}berzeugend repr{\"a}sentiert werden. Die wichtigsten Moden werden, in globaler Betrachtung, in verschiedenen Beobachtungsdaten {\"u}ber einen neuen Ansatz identifiziert. So k{\"o}nnen f{\"u}r einige bekannte Zirkulationsmuster neue Indexdefinitionen gewonnen werden, die sich sowohl als {\"a}quivalent zu den Standardverfahren erweisen und im Vergleich zu diesen zudem eine deutliche Reduzierung des Rechenaufwandes bedeuten. Andere bekannte Moden werden dagegen als weniger bedeutsame, regionale Zirkulationsmuster eingestuft. Die hier vorgestellte Methode zur Beurteilung der Simulation von ENSO ist in guter {\"U}bereinstimmung mit anderen Ans{\"a}tzen, ebenso die daraus folgende Bewertung der gesamten Performance der AOGCMs. Das Spektrum des Southern Oscillation-Index (SOI) stellt somit eine aussagekr{\"a}ftige Kenngr{\"o}ße der Modellqualit{\"a}t dar. Die Unterschiede in der F{\"a}higkeit, das ENSO-System abzubilden, erweisen sich als signifikante Unsicherheitsquelle im Hinblick auf die zuk{\"u}nftige Entwicklung einiger fundamentaler und bedeutsamer Klimagr{\"o}ßen, konkret der globalen Mitteltemperatur, des SOIs selbst, sowie des indischen Monsuns. Ebenso zeigen sich signifikante Unterschiede f{\"u}r regionale Klima{\"a}nderungen zwischen zwei Teilensembles des CMIP3, die auf Grundlage der entwickelten Bewertungsfunktion eingeteilt werden. Jedoch sind diese Effekte im Allgemeinen nicht mit den Auswirkungen der anthropogenen Klima{\"a}nderungssignale im Multi-Modell Ensemble vergleichbar, die f{\"u}r die meisten Klimagr{\"o}ßen in einem robusten multivariaten Ansatz detektiert und quantifiziert werden k{\"o}nnen. Entsprechend sind die effektiven Klima{\"a}nderungen, die sich bei der Kombination aller Simulationen als grundlegende Aussage des CMIP3 unter den speziellen Randbedingungen ergeben nahezu unabh{\"a}ngig davon, ob alle L{\"a}ufe mit dem gleichen Einfluss ber{\"u}cksichtigt werden, oder ob die erstellte nummerische Gewichtung verwendet wird. Als eine wesentliche Begr{\"u}ndung hierf{\"u}r kann die Spannbreite der Entwicklung des ENSO-Systems identifiziert werden. Dies bedeutet gr{\"o}ßere Schwankungen in den Ergebnissen der Modelle mit funktionierendem ENSO, was den Stellenwert der nat{\"u}rlichen Variabilit{\"a}t als Unsicherheitsquelle in Fragen des Klimawandels unterstreicht. Sowohl bei Betrachtung der Teilensembles als auch der Gewichtung wirken sich dadurch gegenl{\"a}ufige Trends im SOI ausgleichend auf die Entwicklung anderer Klimagr{\"o}ßen aus, was insbesondere bei letzterem Vorgehen signifikante mittlere Effekte des Ansatzes, verglichen mit der Verwendung des {\"u}blichen arithmetischen Multi-Modell Mittelwert, verhindert.}, subject = {Modell}, language = {de} } @phdthesis{Riedlinger2006, author = {Riedlinger, Torsten}, title = {Charakterisierung und Modellierung der interferierenden klimatischen, orographischen und anthropogenen Einfl{\"u}sse auf die Landschaftsentwicklung des oberen Rio Guadalent{\´i}n (Spanien)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-20633}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Mit der vorliegenden Arbeit wurde exemplarisch die holoz{\"a}ne Klima- und Landschaftsentwicklung f{\"u}r einen semiariden Natur- und Kulturraum in S{\"u}dost-Spanien rekonstruiert. Dabei wurden unterschiedliche klimatologische, orographische und anthropogene Einflussfaktoren beschrieben und deren interdependentes Wirkungsgef{\"u}ge abgeleitet. Dies erfolgte durch die Analyse des subrezenten Regionalklimas, anhand eines an die semi-ariden Bedingungen angepassten Wasserhaushaltsmodells sowie durch die Einbeziehung von stratigraphischen und geochemischen Untersuchungen an Sedimentaufschl{\"u}ssen, die eine Interpretation der regionalen holoz{\"a}nen Klima- und Umweltgeschichte erm{\"o}glicht. Um eine Vergleichsbasis f{\"u}r die holoz{\"a}nen Klimabedingungen zu erhalten, wurde das Klima der letzten 50 Jahre im Hinblick auf subrezente {\"A}nderungen analysiert. Dazu wurden die r{\"a}umlichen und zeitlichen Eigenschaften der Niederschlagsquantit{\"a}t und -intensit{\"a}t ausgewertet und beschrieben. Durch die differenzierte Gegen{\"u}berstellung der Resultate der verschiedenen Auswertever¬fahren wird eine detaillierte Beschreibung der rezenten und subrezenten pluvio-klimatischen Steuergr{\"o}ßen f{\"u}r das Untersuchungsgebiet m{\"o}glich. Die Analysen zeigen, dass die 30 j{\"a}hrigen Mittelwerte der Jahresniederschlagssummen im Untersuchungsgebiet zwischen 281 und 426 mm schwanken und, entgegen dem f{\"u}r das westliche Mediterraneum postulierten negativen Trend, zunehmen. Die Anzahl der annuellen Niederschlagstage unterliegt einer hohen Variabilit{\"a}t, wenngleich ein positiver Trend der Starkniederschlagsereignisse, insbesondere f{\"u}r die Monate September und Oktober, zu erkennen ist. Dies ist vor dem Hintergrund der sommerlichen Trockenheit (40 bis 150 Tage) entscheidend, da fr{\"u}hherbstliche Starkniederschlagsereignisse aufgrund des erh{\"o}hten Oberfl{\"a}chenabflusses besonders erosionswirksam sind. Die relative annuelle Niederschlagsvariabilit{\"a}t im Untersuchungsgebiet erreicht bis zu 36 \% und liegt damit teilweise {\"u}ber den Werten von ariden nordafrikanischen Gebieten. Ein deutlicher Unterschied des pluvio-klimatischen Regimes konnte im Untersuchungsgebiet in Abh{\"a}ngigkeit der orographischen Verh{\"a}ltnisse festgestellt werden. So schwanken die Werte f{\"u}r die Niederschlagssumme, -intensit{\"a}t und -dauer sowie zeitlichem Auftreten in Abh{\"a}ngigkeit von der umgebenden Reliefstruktur und H{\"o}henlage deutlich. Um m{\"o}gliche Ver{\"a}nderungen der ephemeren und periodischen Abflusscharakteristik sowie der Wasserhaushaltsgr{\"o}ßen ableiten zu k{\"o}nnen, wurde ein fl{\"a}chendifferenziertes Wasserhaushalts-Simulationsmodell an die semi-ariden Bedingungen des Untersuchungsgebietes angepasst. Auf der Basis der Modellergebnisse f{\"u}r die Jahre 1988 bis 1993 konnte gezeigt werden, dass der mittlere Gebietsniederschlag von rund 430 mm zu 87 \% verdunstet, was auf die hohen Lufttemperaturen, die h{\"a}ufigen Strahlungswetterlagen, die Windverh{\"a}ltnisse sowie die reduzierte Wasseraufnahmef{\"a}higkeit des Bodens zur{\"u}ckgef{\"u}hrt wird. Die mittlere, modellierte Gesamtabflussspende betr{\"a}gt lediglich 32 mm, was rund 7.5 \% der Gebietsniederschlagssumme entspricht und als charakteristisch f{\"u}r semi-aride Naturr{\"a}ume angesehen werden kann. Die {\"A}nderung des Boden- und Grundwasser¬speichers von +24 mm wird teilweise durch die anthropogene Nutzung, durch Bew{\"a}sserung und den Bau von R{\"u}ckhaltebecken erkl{\"a}rt. Neben der hydrologischen Modellierung wurden des Weiteren Landbedeckungsszenarien erstellt und in das adaptierte Modell integriert, um die holoz{\"a}nen Umweltbedingungen zu rekonstruieren. Dabei hat sich gezeigt, dass unter potentiell nat{\"u}rlicher Vegetation eine Erh{\"o}hung der Bodenfeuchte und des Zwischenabflusses, eine Reduzierung des Oberfl{\"a}chenabflusses und eine Steigerung der potentiellen Evapotranspiration gegen{\"u}ber dem heutigen Zustand erfolgt. Unter intensivierten Landnutzungsbedingungen, die m{\"o}glicherweise zu Beginn des Subatlantikums geherrscht haben oder in Zukunft auftreten k{\"o}nnten, erfolgt hingegen eine Erh{\"o}hung des Oberfl{\"a}chenabflusses, eine Reduzierung der pflanzenverf{\"u}gbaren Bodenfeuchte sowie eine verminderte aktuelle Evapotranspiration, wenngleich die {\"A}nderungs¬betr{\"a}ge geringer als in Szenario 1 ausfallen. Dies liegt vermutlich daran, dass die heutige Landnutzung mit Trockenfeldbau, Bew{\"a}sserungskulturen und Weidewirtschaft als intensiv beschrieben werden kann und durch Landdegradation und Erosion gekennzeichnet ist. Dazu z{\"a}hlen insbesondere Erosionsprozesse, die durch fließendes Wasser, Wind oder durch Gravitation ausgel{\"o}st werden und vornehmlich auf steilen ackerbaulich und weidewirtschaftlich genutzten Fl{\"a}chen auftreten. Der Mensch greift seit der Antike in unterschiedlicher Intensit{\"a}t in dieses Prozessgeschehen ein, und ver{\"a}ndert durch seine wirtschaftende T{\"a}tigkeit die Pflanzenbedeckung, die Bodeneigenschaften (z.B. Bodenwasserhaushalt) sowie das Mikro- und Mesorelief, und verst{\"a}rkt oder vermindert damit die nat{\"u}rlichen Erosionsprozesse. Die anthropogenen Auswirkungen auf die historische Landschaftsentwicklung wurden in der vergleichenden Betrachtung der stratigraphischen und geochemischen Untersuchungen von drei Sedimentaufschl{\"u}ssen aufgezeigt. Zwei Sedimentaufschl{\"u}sse im hydrologischen Einzugsgebiet des R{\´i}o Caramel zeigen erh{\"o}hte Akkumulationsraten, steigende Anteile von organischem Kohlenstoff und eine {\"A}nderung der stratigraphischen Charakterisik f{\"u}r die letzten 3.000 Jahre BP an. Auf der Basis von geochemischen Untersuchungen der Sedimente wurden Verh{\"a}ltniswerte zwischen MgO/CaO, Fe2O3/MnO und SiO2/(CaO+MgO) bestimmt, deren {\"A}nderungen als Maß f{\"u}r die vorzeitlichen Umweltbedingungen angesehen werden k{\"o}nnen. F{\"u}r das Sp{\"a}tglazial zeigen diese Untersuchungen relativ trockene Umweltbedingungen an. Zum Ende des Pr{\"a}boreals steigen die Indizes an und deuten auf eine Ver{\"a}nderung der Umweltbedingungen im Untersuchungsraum hin, deren Trend bis ins sp{\"a}te Subboreal anh{\"a}lt. Die feuchteste Phase erfolgt im {\"U}bergang zwischen Atlantikum und Subboreal und f{\"a}llt somit mit dem Beginn der ackerbau¬lichen Nutzung der Region zusammen. Seither erfolgt eine Aridisierungstendenz, die mit kurzen Unterbrechungen das gesamte Subatlantikum andauert. Basierend auf den vorgestellten klimatischen und orographischen Analysen sowie unter Ber{\"u}cksichtigung der Resultate der Wasserhaushaltsmodellierung und Szenarien konnte in dieser interdisziplin{\"a}ren Arbeit ein Beitrag zur Rekonstruktion der subrezenten und holoz{\"a}nen Klima- und Umweltgeschichte des hydrologischen Einzugsgebietes des oberen Rio Guadalent{\´i}n geleistet werden. Dieser Beitrag ist im {\"u}bergeordneten Kontext der holoz{\"a}nen Forschung des westlichen Mediterraneums zu sehen, die ein besseres Verst{\"a}ndnis der allgemeinen Landschafts- und Klimaentwicklung der letzten 10.000 Jahre f{\"u}r die Iberische Halbinsel erm{\"o}glicht. Insbesondere die Ergebnisse der stratigraphischen und geochemischen Untersuchungen der Sedimentaufschl{\"u}sse erscheinen im Hinblick auf die holoz{\"a}ne Umweltgeschichte f{\"u}r eine großr{\"a}umige {\"U}bertragung geeignet, um die zuk{\"u}nftige Landschaftsentwicklung besser verstehen und prognostizieren zu k{\"o}nnen.}, subject = {Oberer Rio Guadalent{\´i}n }, language = {de} } @phdthesis{Ring2018, author = {Ring, Christoph}, title = {Entwicklung und Vergleich von Gewichtungsmetriken zur Analyse probabilistischer Klimaprojektionen aktueller Modellensembles}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157294}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {XII, 195}, year = {2018}, abstract = {Der anthropogene Klimawandel ist eine der gr{\"o}ßten Herausforderungen des 21. Jahrhunderts. Eine Hauptschwierigkeit liegt dabei in der Unsicherheit bez{\"u}glich der regionalen {\"A}nderung von Niederschlag und Temperatur. Hierdurch wird die Entwicklung geeigneter Anpassungsstrategien deutlich erschwert. In der vorliegenden Arbeit werden vier Evaluationsans{\"a}tze mit insgesamt 13 Metriken f{\"u}r aktuelle globale (zwei Generationen) und regionale Klimamodelle entwickelt und verglichen, um anschließend eine Analyse der Projektionsunsicherheit vorzunehmen. Basierend auf den erstellten Modellbewertungen werden durch Gewichtung Aussagen {\"u}ber den Unsicherheitsbereich des zuk{\"u}nftigen Klimas getroffen. Die Evaluation der Modelle wird im Mittelmeerraum sowie in acht Unterregionen durchgef{\"u}hrt. Dabei wird der saisonale Trend von Temperatur und Niederschlag im Evaluationszeitraum 1960-2009 ausgewertet. Zus{\"a}tzlich wird f{\"u}r bestimmte Metriken jeweils das klimatologische Mittel oder die harmonischen Zeitreiheneigenschaften evaluiert. Abschließend werden zum Test der {\"U}bertragbarkeit der Ergebnisse neben den Hauptuntersuchungsgebieten sechs global verteilte Regionen untersucht. Außerdem wird die zeitliche Konsistenz durch Analyse eines zweiten, leicht versetzten Evaluationszeitraums behandelt, sowie die Abh{\"a}ngigkeit der Modellbewertungen von verschiedenen Referenzdaten mit Hilfe von insgesamt drei Referenzdatens{\"a}tzen untersucht. Die Ergebnisse legen nahe, dass nahezu alle Metriken zur Modellevaluierung geeignet sind. Die Auswertung unterschiedlicher Variablen und Regionen erzeugt Modellbewertungen, die sich in den Kontext aktueller Forschungsergebnisse einf{\"u}gen. So wurde die Leistung der globalen Klimamodelle der neusten Generation (2013) im Vergleich zur Vorg{\"a}ngergeneration (2007) im Schnitt {\"a}hnlich hoch bzw. in vielen Situationen auch st{\"a}rker eingeordnet. Ein durchweg bestes Modell konnte nicht festgestellt werden. Der Großteil der entwickelten Metriken zeigt f{\"u}r {\"a}hnliche Situationen {\"u}bereinstimmende Modellbewertungen. Bei der Gewichtung hat sich der Niederschlag als besonders geeignet herausgestellt. Grund hierf{\"u}r sind die im Schnitt deutlichen Unterschiede der Modellleistungen in Zusammenhang mit einer geringeren Simulationsg{\"u}te. Umgekehrt zeigen die Metriken f{\"u}r die Modelle der Temperatur allgemein {\"u}berwiegend hohe Evaluationsergebnisse, wodurch nur wenig Informationsgewinn durch Gewichtung erreicht werden kann. W{\"a}hrend die Metriken gut f{\"u}r unterschiedliche Regionen und Skalenniveaus verwendet werden Evaluationszeitr{\"a}ume nicht grunds{\"a}tzlich gegeben. Zus{\"a}tzlich zeigen die Modellranglisten unterschiedlicher Regionen und Jahreszeiten h{\"a}ufig nur geringe Korrelationen. Dies gilt besonders f{\"u}r den Niederschlag. Bei der Temperatur sind hingegen leichte {\"U}bereinstimmungen auszumachen. Beim Vergleich der mittleren Ranglisten {\"u}ber alle Modellbewertungen und Situationen der Hauptregionen des Mittelmeerraums mit den Globalregionen besteht eine signifikante Korrelation von 0,39 f{\"u}r Temperatur, w{\"a}hrend sie f{\"u}r Niederschlag um null liegt. Dieses Ergebnis ist f{\"u}r alle drei verwendeten Referenzdatens{\"a}tze im Mittelmeerraum g{\"u}ltig. So schwankt die Korrelation der Modellbewertungen des Niederschlags f{\"u}r unterschiedliche Referenzdatens{\"a}tze immer um Null und die der Temperaturranglisten zwischen 0,36 und 0,44. Generell werden die Metriken als geeignete Evaluationswerkzeuge f{\"u}r Klimamodelle eingestuft. Daher k{\"o}nnen sie einen Beitrag zur {\"A}nderung des Unsicherheitsbereichs und damit zur St{\"a}rkung des Vertrauens in Klimaprojektionen leisten. Die Abh{\"a}ngigkeit der Modellbewertungen von Region und Untersuchungszeitraum muss dabei jedoch ber{\"u}cksichtigt werden. So besitzt die Analyse der Konsistenz von Modellbewertungen sowie der St{\"a}rken und Schw{\"a}chen der Klimamodelle großes Potential f{\"u}r folgende Studien, um das Vertrauen in Modellprojektionen weiter zu steigern.}, subject = {Anthropogene Klima{\"a}nderung}, language = {de} } @techreport{DangelHauensteinKroemeretal.2022, type = {Working Paper}, author = {Dangel, Vanessa and Hauenstein, Elena and Kroemer, Maximilian and Lebok, Katharina}, title = {Fridays for Future: Umfassende Gerechtigkeitsvorstellungen mit konkreten Umsetzungsperspektiven? Ein L{\"a}ndervergleich zwischen Deutschland, {\"O}sterreich, Italien und Ungarn}, issn = {2193-9179}, doi = {10.25972/OPUS-29637}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-296371}, pages = {46}, year = {2022}, abstract = {Die Bedeutung der sozialen Bewegung Fridays for Future (FFF) ist auch nach der Covid-19-Pandemie hoch, was sich daran zeigt, dass am 23.09.2022 weltweit zahlreiche Demonstrierende beim globalen Klimastreik f{\"u}r Klimagerechtigkeit auf die Straße gingen. Aus dem großen Zuspruch f{\"u}r die Bewegung ergibt sich zum einen die Frage, was die Klimabewegung unter Gerechtigkeit versteht und zum anderen die Frage, wie sie diese politisch umsetzen m{\"o}chte. F{\"u}r die Untersuchung wird ein L{\"a}ndervergleich zwischen den FFF-Gruppen Deutschland, {\"O}sterreich, Italien und Ungarn vorgenommen. Die Autor:innen des Forschungsbeitrags f{\"u}hrten mithilfe von Interviews mit Aktivist:innen, Analysen der Websites und des relevantesten Social Media-Kanals Fallanalysen durch. Die Forschungsarbeit kommt dabei zum Ergebnis, dass die Gerechtigkeitsvorstellungen der Gruppen nahezu {\"u}bereinstimmen. Hinsichtlich der Umsetzungsperspektiven ergeben sich viele Gemeinsamkeiten bei der Netzwerkbildung und dem Agenda Setting der nationalen FFF-Gruppen. W{\"a}hrend die konkreten Forderungen der Aktivist:innen an verschiedene Akteur:innen divergieren, ist allen vier untersuchten FFF-Gruppen gemein, dass die Politik der zentrale Adressat der Forderungen ist.}, subject = {Soziale Bewegung}, language = {de} } @phdthesis{Keupp2024, author = {Keupp, Luzia Esther}, title = {Hochaufgel{\"o}ste Erfassung zuk{\"u}nftiger Klimarisiken f{\"u}r Land- und Forstwirtschaft in Unterfranken}, doi = {10.25972/OPUS-34735}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-347350}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Das Klima und seine Ver{\"a}nderungen wirken sich direkt auf die Land- und Forstwirtschaft aus. Daher ist die Untersuchung der zuk{\"u}nftigen Klimarisiken f{\"u}r diese Sektoren von hoher Relevanz. Dies ist auch und vor allem f{\"u}r den schon heute weitr{\"a}umig trockheitsgepr{\"a}gten und vom Klimawandel besonders betroffenen nordwestbayerischen Regierungsbezirk Unterfranken der Fall, dessen Gebiet zu {\"u}ber 80 \% land- oder forstwirtschaftlich genutzt wird. Zur Untersuchung der Zukunft in hoher r{\"a}umlicher Aufl{\"o}sung werden Projektionen von regionalen Klimamodellen genutzt. Da diese jedoch Defizite in der Repr{\"a}sentation des beobachteten Klimas der Vergangenheit aufweisen, sollte vor der weiteren Verwendung eine Anpassung der Daten erfolgen. Dies geschieht in der vorliegenden Arbeit am Beispiel des regionalen Klimamodells REMO im Bezug auf klimatische Kennwerte f{\"u}r Trockenheit, Starkniederschlag, Hitze sowie (Sp{\"a}t-)Frost, die alle eine hohe land- und forstwirtschaftliche Bedeutung besitzen. Die Datenanpassung erfolgt durch zwei verschiedene Ans{\"a}tze. Zum Einen wird eine Biaskorrektur der aus Globalmodell-angetriebenen REMO-Daten berechneten Indizes durch additive und multiplikative Linearskalierung sowie empirische und parametrische Verteilungsanpassung durchgef{\"u}hrt. Zum Anderen wird ein exploratives Verfahren auf Basis von Model Output Statistics angewandt: Lokale und großr{\"a}umige atmosph{\"a}rische Variablen von REMO mit Reanalyseantrieb, die eine zeitliche Korrespondenz zu den Beobachtungen aufweisen, dienen als Pr{\"a}diktoren f{\"u}r die Aufstellung von Transferfunktionen zur Simulation der Indizes. Diese Transferfunktionen werden sowohl mithilfe Multipler Linearer Regression als auch mit verschiedenen Generalisierten Linearen Modellen konstruiert. Sie werden anschließend genutzt, um Analysen auf Basis von biaskorrigierten Globalmodell-angetriebenen REMO-Pr{\"a}diktoren durchzuf{\"u}hren. Sowohl f{\"u}r die Biaskorrektur als auch die Model Output Statistics wird eine Kreuzvalidierung durchgef{\"u}hrt, um die Ergebnisse unabh{\"a}ngig vom jeweiligen Trainingszeitraum zu untersuchen und die jeweils besten Varianten zu finden. Werden beide Verfahren mit ihren Unterkategorien f{\"u}r den gesamten historischen Modellzeitraum verglichen, so weist f{\"u}r alle Monat-Kennwert-Kombinationen eine der beiden Verteilungskorrekturen die besten Ergebnisse auf. Die Zukunftsprojektionen unter Verwendung der jeweils erfolgreichsten Methode zeigen im regionalen Durchschnitt f{\"u}r das 21. Jahrhundert negative Trends der (Sp{\"a}t-)Frost- und Eis- sowie positive Trends der Hitzetageh{\"a}ufigkeit. Winterliche Starkregenereignisse nehmen hinsichtlich ihrer Anzahl zu, im Sommer verst{\"a}rkt sich die Trockenheit. Die Hinzunahme zwei weiterer regionaler Klimamodelle best{\"a}tigt die allgemeinen Zukunftstrends, jedoch ergeben sich beim Sp{\"a}tfrost Widerspr{\"u}che, wenn dieser hinsichtlich der thermisch abgegrenzten Vegetationsperiode definiert wird. Zus{\"a}tzlich werden die Model Output Statistics auf gleiche Weise mit bodennahen Pr{\"a}diktoren zur Simulation von Ertr{\"a}gen aus Acker- und Weinbau wiederholt. Die G{\"u}te kann aufgrund mangelnder Beobachtungsdatenl{\"a}nge nur anhand der Reanalyse-angetriebenen REMO-Daten abgesch{\"a}tzt werden, ist hierbei jedoch deutlich besser als im Bezug auf die Kennwertsimulation. Die Zukunftsprojektionen von REMO sowie drei weiterer Regionalmodelle zeigen im Mittel {\"u}ber alle Landkreise Unterfrankens steigende Winter- sowie sinkende Sommerfeldfruchtertr{\"a}ge. Hinsichtlich der Frankenweinertr{\"a}ge widersprechen sich die Ergebnisse der drei Klassen Weiß-, Rot- und Gesamtwein insofern, als dass REMO und ein weiteres Modell negative Weiß- und Rotweinertragstrends, jedoch positive Gesamtweinertragstrends simulieren. Die zwei anderen verwendeten Modelle f{\"u}hren durch positive Trendvorzeichen f{\"u}r den Weißwein zu insgesamt koh{\"a}renten Ergebnissen. Die Resultate im Bezug auf die land- und forstwirtschaftlich relevanten klimatischen Kennwerte bedeuten, dass Anpassungsmaßnahmen gegen{\"u}ber Hitze sowie im Speziellen gegen{\"u}ber Trockenheit in Zukunft im ohnehin trockenheitsgepr{\"a}gten Unterfranken an Bedeutung gewinnen werden. Auch die unsicheren Projektionen im Bezug auf die Sp{\"a}tfrostgefahr m{\"u}ssen im Blick behalten werden. Die Trends der Feldfruchtertr{\"a}ge deuten in die gleiche Richtung, da Sommergetreide eine h{\"o}here Trockenheitsanf{\"a}lligkeit besitzen. Die unklaren Ergebnisse der Weinertr{\"a}ge hingegen lassen keine eindeutigen Schl{\"u}sse zu. Der starke anthropogene Einfluss auf die Erntemengen sowie die großen Unterschiede der Rebsorten hinsichtlich der klimatischen Eignung k{\"o}nnten ein Grund hierf{\"u}r sein.}, subject = {Klima}, language = {de} } @phdthesis{Abel2023, author = {Abel, Daniel Karl-Joseph}, title = {Weiterentwicklung der Bodenhydrologie des regionalen Klimamodells REMO}, doi = {10.25972/OPUS-31146}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311468}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Die Bodenfeuchte stellt eine essenzielle Variable f{\"u}r den Energie-, Feuchte- und Stoffaustausch zwischen Landoberfl{\"a}che und Atmosph{\"a}re dar. Ihre Auswirkungen auf Temperatur und Niederschlag sind vielf{\"a}ltig und komplex. Die in Klimamodellen verwendeten Schemata zur Simulation der Bodenfeuchte, auch bodenhydrologische Schemata genannt, sind aufgrund des Ursprungs der Klimamodelle aus Wettermodellen jedoch h{\"a}ufig sehr stark vereinfacht dargestellt. Bei Klimamodellen, die Simulationen mit einer groben Aufl{\"o}sung von mehreren Zehner- oder Hunderterkilometern rechnen, k{\"o}nnen viele Prozesse vernachl{\"a}ssigt werden. Da die Aufl{\"o}sung der Klimamodelle jedoch stetig steigt und mittlerweile beim koordinierten Projekt regionaler Klimamodelle CORDEX-CORE standardm{\"a}ßig bei 0.22° Kantenl{\"a}nge liegt, m{\"u}ssen auch h{\"o}her aufgel{\"o}ste Daten und mehr Prozesse simuliert werden. Dies gilt erst recht mit Blick auf konvektionsaufl{\"o}sende Simulationen mit wenigen Kilometern Kantenl{\"a}nge. Mit steigenden Modellaufl{\"o}sungen steigt zugleich die Komplexit{\"a}t und Differenziertheit der Fragestellungen, die mit Hilfe von Klimamodellen beantwortet werden sollen. An diesem Punkt setzt auch das Projekt BigData@Geo an, in dessen Rahmen die vorliegende Arbeit entstand. Ziel dieses Projektes ist es, hochaufgel{\"o}ste Klimainformationen f{\"u}r den bayerischen Regierungsbezirk Unterfranken f{\"u}r Akteure aus der Land- und Forstwirtschaft sowie dem Weinbau zur Verf{\"u}gung zu stellen. Auf diesen angewandten und grundlegenden Anforderungen und Zielsetzungen basierend, bedarf auch das in dieser Arbeit verwendete regionale Klimamodell REMO (Version 2015) der weiteren Entwicklung. So ist das Hauptziel der Arbeit das bestehende einschichtige bodenhydrologische Schema durch ein mehrschichtiges zu ersetzen. Der Vorteil mehrerer simulierter Bodenschichten besteht darin, dass nun die vertikale Bewegung des Wassers in Form von Versickerung und kapillarem Aufstieg simuliert werden kann. Dies geschieht auf der Basis bodenhydrologischer Parameter, deren Wert in Abh{\"a}ngigkeit vom Boden und der Bodenfeuchte {\"u}ber die Wasserr{\"u}ckhaltekurve bestimmt wird. F{\"u}r diese Kurve existieren verschiedene Parametrisierungen, von denen die Ans{\"a}tze von Clapp-Hornberger und van Genuchten verwendet wurden. Außerdem kann die Bodenfeuchte nun bis zu einer Tiefe von circa 10 m beziehungsweise der Tiefe des anstehenden Gesteins simuliert werden. Damit besteht im Gegensatz zum vorherigen Schema, dessen Tiefe auf die Wurzeltiefe beschr{\"a}nkt ist, die M{\"o}glichkeit, dass Wasser auch unterhalb der Wurzeln zur Verf{\"u}gung stehen kann und somit die absolute im Boden verf{\"u}gbare Wassermenge zunimmt. Die Schichtung erlaubt dar{\"u}ber hinaus die Verdunstung aus unbewachsenem Boden lediglich auf Basis des in der obersten Schicht verf{\"u}gbaren Wassers. Ein weiterer Prozess, der dank der Schichtung und der weiter unten erl{\"a}uterten Datens{\"a}tze neu parametrisiert werden kann, ist die Infiltration. F{\"u}r die Verwendung des Schemas sind Informationen {\"u}ber bodenhydrologische Parameter, die Wurzeltiefe und die Tiefe bis zum anstehenden Gestein erforderlich. Entsprechende Datens{\"a}tze m{\"u}ssen hierf{\"u}r aufbereitet und in das Modell eingebaut werden. Bez{\"u}glich der Wurzeltiefe wurden drei sich bez{\"u}glich der Tiefe, der Definition und der verf{\"u}gbaren Aufl{\"o}sung stark voneinander unterscheidende Datens{\"a}tze verglichen. Letztendlich wird die Wurzeltiefe aus dem mit einer anderen REMO-Version gekoppelten Vegetationsmodul iMOVE verwendet, da zuk{\"u}nftig eine Kopplung dieses Moduls mit dem mehrschichtigen Boden geplant ist und die Wurzeltiefen damit konsistent sind. Zudem ist die zugrundeliegende Aufl{\"o}sung der Daten hoch und es werden maximale Wurzeltiefen ber{\"u}cksichtigt, die besonders wichtig f{\"u}r die Simulation von Landoberfl{\"a}che-Atmosph{\"a}re-Interaktionen sind. Diese Vorteile brachten die anderen Datens{\"a}tze nicht mit. In der finalen Modellversion werden f{\"u}r die Tiefe bis zum anstehenden Gestein und die Korngr{\"o}ßenverteilungen die Daten von SoilGrids verwendet. Ein Vergleich mit anderen Bodendatens{\"a}tzen fand in einer parallel laufenden Dissertation statt (Ziegler 2022). Bei SoilGrids ist hervorzuheben, dass die Korngr{\"o}ßenverteilungen in einer hohen r{\"a}umlichen Aufl{\"o}sung (1 km^2 oder h{\"o}her) und mit mehreren vertikalen Schichten vorliegen. Gegen{\"u}ber dem urspr{\"u}nglich in REMO verwendeten Datensatz mit einer Kantenl{\"a}nge von 0.5° und ohne vertikale Differenzierung ist dies eine starke Verbesserung der Eingangsdaten. Dazu kommt, dass die Korngr{\"o}ßenverteilungen die Verwendung kontinuierlicher Pedotransferfunktionen statt f{\"u}nf diskreter Texturklassen, denen f{\"u}r die bodenhydrologischen Parameter fixe Tabellenwerte zugewiesen werden, erm{\"o}glichen. Dies f{\"u}hrt zu einer deutlich besseren Differenzierung des heterogenen Bodens. Im Rahmen der Arbeit wurden insgesamt 19 Simulationen f{\"u}r Europa und ein erweitertes Deutschlandgebiet mit Aufl{\"o}sungen von 0.44° beziehungsweise 0.11° f{\"u}r den Zeitraum 2000 bis 2018 gerechnet. Dabei zeigte sich, dass die Einf{\"u}hrung des mehrschichtigen Bodenschemas gegen{\"u}ber dem einschichtigen Schema zu einer Verringerung der Bodenfeuchte in der Wurzeltiefe f{\"u}hrt. Nichtsdestotrotz nimmt die absolute Wassermenge des Bodens durch die Ber{\"u}cksichtigung des Bodens unterhalb der Wurzelzone zu. Bezogen auf die einzelnen Schichten wird die Bodenfeuchte damit zwar untersch{\"a}tzt, im Laufe der Modellentwicklung kann jedoch eine Verbesserung im Vergleich zu ERA5 erzielt werden. Das neue Schema f{\"u}hrt zu einer Verringerung der Evapotranspiration, die {\"u}ber alle Schritte der Modellentwicklung und besonders w{\"a}hrend der Sommermonate auftritt. Im Vergleich zu Validationsdaten von ERA5 und GLEAM zeigt sich, dass dies eine Verbesserung dieser Gr{\"o}ße bedeutet, die sowohl in der Fl{\"a}che als auch beim Fehler und in der Verteilung auftritt. Gleiches l{\"a}sst sich f{\"u}r den Oberfl{\"a}chenabfluss sagen. Hierf{\"u}r implementierte Schemata (Philip, Green-Ampt), die anders als das standardm{\"a}ßig verwendete Improved-Arno-Schema bodenhydrologische Parameter ber{\"u}cksichtigen, konnten eine weitere Verbesserung im Flachland zeigen. In Gebirgsregionen nahm der Fehler durch die nicht enthaltene Ber{\"u}cksichtigung der Hangneigung jedoch zu, sodass in der finalen Modellversion auf das Improved-Arno-Schema zur{\"u}ckgegriffen wurde. Die Temperatur steigt durch die urspr{\"u}ngliche Version des mehrschichtigen Schemas zun{\"a}chst an, was zu einer {\"U}ber- statt der vorherigen Untersch{\"a}tzung gegen{\"u}ber E-OBS f{\"u}hrt. Die Modellentwicklung resultiert zwar in einer Reduzierung der Temperatur, jedoch f{\"a}llt diese zu stark aus, sodass der Temperaturfehler letztendlich gr{\"o}ßer als in der einschichtigen Modellversion ist. Da die Evapotranspiration jedoch maßgeblich verbessert wurde, kann dieser Fehler eventuell auf ein {\"u}berm{\"a}ßiges Tuning der Temperatur zur{\"u}ckgef{\"u}hrt werden. Die Betrachtung von Hitzeereignissen am Beispiel der Sommer 2003 und 2018 hat gezeigt, dass die Modellentwicklung dazu beitr{\"a}gt, diese Ereignisse besser als das einschichtige Schema zu simulieren. Zwar trifft dies nicht auf das r{\"a}umliche Verhalten der mittleren Temperatur zu, jedoch auf deren zeitlichen Verlauf. Hinzu kommt die bessere Simulation der t{\"a}glichen Extrem- und besonders der Minimaltemperatur, was zu einer Erh{\"o}hung der t{\"a}glichen Temperaturspanne f{\"u}hrt. Diese wird von Klimamodellen in der Regel zu stark untersch{\"a}tzt. Durch die Ber{\"u}cksichtigung der vertikalen Wasserfl{\"u}sse hat sich jedoch auch gezeigt, dass noch enormes Entwicklungspotenzial mit Blick auf (boden)hydrologische Prozesse besteht. Dies gilt in besonderem Maße f{\"u}r zuk{\"u}nftige Simulationen mit konvektionserlaubender Aufl{\"o}sung. So sollten subskalige Informationen des Bodens und der Orographie ber{\"u}cksichtigt werden. Dies dient einerseits der Repr{\"a}sentation vorliegender Heterogenit{\"a}ten und kann andererseits, wie am Beispiel der Infiltrationsschemata dargelegt, zur Verbesserung bestehender Prozesse beitragen. Da die simulierte Drainage durch das mehrschichtige Bodenschema im gleichen Maße zu- wie der Oberfl{\"a}chenabfluss abnimmt und das Wasser dem Modell in der Folge nicht weiter zur Verf{\"u}gung steht, sollte zuk{\"u}nftig auch Grundwasser im Modell ber{\"u}cksichtigt werden. Eine Vielzahl von Studien konnte einen Mehrwert durch die Implementierung dieser Variable und damit verbundener Prozesse feststellen. Mittelfristig ist jedoch insgesamt die Kopplung an ein hydrologisches Modell zu empfehlen, um die bei hochaufl{\"o}senden Simulationen relevanten Prozesse angemessen repr{\"a}sentieren zu k{\"o}nnen. Hierf{\"u}r bieten sich beispielsweise ParFlow oder mHM an. Insgesamt ist festzuhalten, dass das mehrschichtige Bodenschema einen Mehrwert liefert, da schwer zu simulierende und in der Postprozessierung zu korrigierende Variablen wie die Evapotranspiration und der Oberfl{\"a}chenabfluss deutlich besser modelliert werden k{\"o}nnen als mit dem einschichtigen Schema. Dies gilt auch f{\"u}r die Extremtemperaturen. Beides ist klar auf die Schichtung des Bodens und damit einhergehender Prozesse zur{\"u}ckzuf{\"u}hren. Bez{\"u}glich der Daten zeigt sich, dass die Wurzeltiefe, die Ber{\"u}cksichtigung von SoilGrids und die vertikale Bodeninformation f{\"u}r die weitere Optimierung verantwortlich sind. Dar{\"u}ber hinaus ist der h{\"o}here Informationsgehalt, der anhand der geschichteten Bodenfeuchte zur Verf{\"u}gung steht, ebenfalls als Mehrwert einzustufen.}, subject = {Klima}, language = {de} }