@phdthesis{Grebner2012, author = {Grebner, Wiebke}, title = {Organspezifische Bildung und Funktion von Oxylipinen in Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76730}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Oxylipine sind Signalmolek{\"u}le, welche durch die enzymatische oder nicht-enzymatische Oxidation von Fetts{\"a}uren gebildet werden. Eine bedeutende Gruppe von Oxylipinen in Pflanzen sind die Jasmonate. Dazu z{\"a}hlen Jasmons{\"a}ure (JA), deren Vorstufe 12-Oxophytodiens{\"a}ure (OPDA) sowie deren Metabolite. Ein bedeutender Metabolit von JA ist das Aminos{\"a}ure-Konjugat JA-Isoleucin (JA-Ile), welches hohe biologische Aktivit{\"a}t besitzt. Besonders f{\"u}r die oberirdischen Organe von Pflanzen wurden bisher vielf{\"a}ltige Funktionen von Jasmonaten beschrieben. Sie sind beteiligt an verschiedenen Entwicklungsprozessen wie der Fertilit{\"a}t von Bl{\"u}ten, aber auch an der Abwehr von Pathogenen und Herbivoren und bei der Reaktion von Pflanzen auf abiotische Stressoren wie hohe Salzkonzentrationen oder Trockenheit. {\"U}ber die Bildung und Funktion von Oxylipinen in Wurzeln ist bisher jedoch nur wenig bekannt. Aus diesem Grund wurden in der vorliegenden Arbeit die Gehalte von Galaktolipiden und Jasmonaten in Spross und Wurzel von Arabidopsis thaliana Pflanzen verglichen. Mit Hilfe verschiedener JA Biosynthese-Mutanten konnte zudem die Bildung von Jasmonaten in der Wurzel und deren biologische Funktion in diesem Pflanzenorgan untersucht werden. Um die Wurzeln der Arabidopsis Pflanzen einfach behandeln zu k{\"o}nnen und um schnell und stressfrei gr{\"o}ßere Mengen von Wurzelmaterial ernten zu k{\"o}nnen, wurde ein hydroponisches Anzuchtsystem etabliert. Die Analyse von Galaktolipiden zeigte, dass in der Wurzel deutlich geringere Galaktolipid Gehalte als im Spross vorhanden sind. Da Galaktolipide den Hauptbestandteil plastid{\"a}rer Membranen ausmachen, in den Wurzeln insgesamt jedoch weniger Plastiden vorkommen als in Bl{\"a}ttern, w{\"a}re dies ein m{\"o}glicher Grund f{\"u}r den beobachteten Unterschied. Das Vorkommen von mit OPDA oder dnOPDA veresterten Galaktolipiden (Arabidopsiden) wird in der Literatur f{\"u}r die Thylakoidmembranen der Chloroplasten beschrieben. Die Analyse der Arabidopsid Gehalte von Wurzeln konnte diese Aussage st{\"u}tzen, da in Wurzeln, welche normalerweise keine Chloroplasten besitzen, nahezu keine Arabidopside detektiert werden konnten. Die Analyse der Jasmonate zeigte anhand von Pfropfungsexperimenten mit der Jasmonat-freien dde2 Mutante, dass die Wurzeln unabh{\"a}ngig vom Spross in der Lage sind Jasmonate zu bilden, obwohl die Expression vieler JA-Biosynthese-Gene in den Wurzeln sehr gering ist. Zudem zeigten diese Experimente, dass es keinen direkten Transport von Jasmonaten zwischen Spross und Wurzel gibt. Die Bildung von Jasmonaten in der Wurzel konnte durch verschiedene Stresse wie Verwundung, osmotischen Stress oder Trockenheit induziert werden. K{\"a}lte und Salzstress hatten hingegen keinen Jasmonat-Anstieg in den Wurzeln zur Folge. Anders als bei osmotischem Stress und Trockenheit, wo sowohl die Gehalte von OPDA als auch von JA und JA-Ile anstiegen, konnte bei Verwundung keine Zunahme der OPDA-Spiegel detektiert werden. Hier kam es zu einer deutlichen Abnahme, wohingegen die JA und JA-Ile Spiegel sehr stark anstiegen. Dies deutet darauf hin, dass es sehr komplexe und vielf{\"a}ltige Regulationsmechanismen hinsichtlich der Bildung von Jasmonaten gibt. Der erste Schritt der JA-Biosynthese, die Bildung von 13-Hydroperoxyfetts{\"a}uren (HPOTE), wird durch 13-Lipoxygenase (LOX) Enzyme katalysiert. In Arabidopsis sind vier unterschiedliche 13-LOX Isoformen bekannt. Die Untersuchung verschiedener 13-LOX-Mutanten ergab, dass nur die LOX6 an der Biosynthese von Jasmonaten in der Wurzel beteiligt ist. So konnten in Wurzeln der lox6 Mutante weder basal noch nach verschiedenen Stressen bedeutende Mengen von Jasmonaten gemessen werden. Im Spross dieser Mutante war basal kein OPDA vorhanden, nach Stresseinwirkung wurden jedoch {\"a}hnliche Jasmonat Gehalte wie im Wildtyp detektiert. Um Hinweise auf die biologische Funktion von Jasmonaten in Wurzeln zu erhalten, wurden Untersuchungen mit einer lox6 KO Mutante durchgef{\"u}hrt. Dabei zeigte sich, dass abgeschnittene lox6 Wurzeln, welche keine Jasmonate bilden, im Vergleich zum Wildtyp von saprobiont lebenden Kellerasseln (Porcellio scaber) bevorzugt als Futter genutzt werden. Bl{\"a}tter dieser Mutante, welche nach Stress ann{\"a}hernd gleiche Jasmonat Gehalte wie der Wildtyp aufweisen, wurden nicht bevorzugt gefressen. Von der Jasmonat-freien dde2 Mutante wurden hingegen sowohl die Wurzeln als auch die Bl{\"a}tter bevorzugt gefressen. Neben den Experimenten mit Kellerasseln wurden auch Welke-Versuche mit lox6 und dde2 Pflanzen durchgef{\"u}hrt. Hierbei wiesen die lox6 Pflanzen, nicht aber die dde2 Pflanzen, eine erh{\"o}hte Suszeptibilit{\"a}t gegen{\"u}ber Trockenheit auf. dde2 Pflanzen haben im Gegensatz zu LOX Mutanten unver{\"a}nderte 13-HPOTE Gehalte, aus denen auch andere Oxylipine als Jasmonate gebildet werden k{\"o}nnen. Dies zeigt, dass durch LOX6 gebildete Oxylipine, im Falle von Trockenheit aber nicht Jasmonate, an der Reaktion von Arabidopsis Pflanzen auf biotische und abiotische Stresse beteiligt sind.}, subject = {Oxylipine}, language = {de} }