@phdthesis{Biela2000, author = {Biela, Alexander}, title = {Molekulare und funktionelle Charakterisierung von pflanzlichen Aquaporinen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3207}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {In der vorliegenden Arbeit wurden pflanzliche Aquaporine aus Nicotiana tabacum und Samanea saman mit molekularbiologischen Methoden analysiert und durch heterologe Expression in Oozyten von Xenopus laevis funktionell charakterisiert. Das aus Tabak isolierte Aquaporin NtAQP1 wird am h{\"o}chsten in Wurzeln exprimiert, ist trotz vorhandener Cysteine nicht quecksilbersensitiv und permeabel f{\"u}r Glycerin und Harnstoff. Sowohl eine Ionenleitf{\"a}higkeit, als auch eine Regulation auf Proteinebene konnten im Oozytensystem nicht nachgewiesen werden. Die Leguminose Samanea saman bewegt im Tag-/Nachtrhythmus ihre Fiederbl{\"a}tter und -stengel. Dieses wird durch Variieren des Turgors im Flexorgewebe von Pulvini realisiert. W{\"a}hrend SsAQP1 in seinen Charakteristika mit NtAQP1 {\"u}bereinstimmt, ist SsAQP2 quecksilbersensitiv und hoch selektiv f{\"u}r Wasser. Der f{\"u}r SsAQP2 ermittelte Permeabilit{\"a}tskoeffizient war um den Faktor 10 h{\"o}her als der von SsAQP1. Northern Experimente zeigten, dass SsAQP2 ausschließlich im Flexorgewebe exprimiert wird. Die Expression ist zum Zeitpunkt der Streckungsbewegung des Pulvinus um 7 Uhr am st{\"a}rksten. Dagegen wurde SsAQP1 zu allen untersuchten Zeitpunkten nur schwach in Pulvini exprimiert.}, subject = {Tabak}, language = {de} } @phdthesis{Hose2000, author = {Hose, Eleonore}, title = {Untersuchungen zum radialen Abscisins{\"a}ure- und Wassertransport in Wurzeln von Helianthus annuus L. und Zea mays L.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1421}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {Mit den Experimenten dieser Arbeit konnte erstmals gezeigt werden, dass ein Phytohormon wie Abscisins{\"a}ure mit dem "Solvent-drag" des Wasserflusses apoplastisch durch den Wurzelzellwandbereich in die Xylemgef{\"a}ße transportiert werden kann. Es konnte ein Bypass-Fluss f{\"u}r ABA durch den gesamten Zellwandapoplasten, auch durch lipophile Barrieren wie Exo- und Endodermis nachgewiesen werden. Dies ist durch die speziellen Molek{\"u}leigenschaften von Abscisins{\"a}ure m{\"o}glich: (i) der geringe Durchmesser des Molek{\"u}ls (8 - 11 nm) und (ii) die hohe Lipophilie von ABA bei schwach sauren pH-Werte. Mit einer Penetration apoplastischer Barrieren ist demnach zu rechnen. Weiterhin wurde gezeigt, dass die Ausbildung solcher lipophilen Zellwandnetze einen signifikanten Einfluss auf den apoplastischen ABA-Transport besitzt. Die Ausbildung einer Exodermis in Mais, wie sie unter nat{\"u}rlichen Bedingungen zu beobachten ist, konnte den ABA-Fluss in das Xylem um die Faktoren 2 bis 4 reduzieren. Da gleichzeitig eine Verminderung der hydraulischen Wurzelleitf{\"a}higkeit um denselben Betrag auftrat, blieb das Wurzel-Spross-ABA-Signal, die Phytohormonkonzentration, im Xylem gleich. Die zu den Stomata geleitete Information {\"u}ber den Wasserzustand der Wurzel {\"a}nderte sich also nicht. Im nat{\"u}rlichen System ist sogar eine Verst{\"a}rkung des Signals zu erwarten, da eine Exodermis nicht als Aufnahme-Barriere f{\"u}r gewebeproduzierte ABA wirkt. Gleichzeitig verringert sie den Verlust von apoplastischer ABA an die Rhizosph{\"a}re. Außerdem wird der Wasserverlust aus dem Gewebe durch eine Exodermis signifikant reduziert wird. Somit sind solche Wurzeln gut an die Bedingungen eines eintrocknenden Bodens angepasst. Apoplastische Barrieren sind demnach, neben membran-lokalisierten Tranportern, wichtige Parameter f{\"u}r die Beurteilung von Wurzeltransporteigenschaften f{\"u}r Wasser und darin gel{\"o}ste Substanzen. Der Beitrag der apoplastischen Komponente zum Gesamt-ABA-Transport ist abh{\"a}ngig von der untersuchten Pflanzenart, der aktuellen Transpirations- oder Wasserflussrate und von Umwelteinfl{\"u}ssen wie erh{\"o}hter ABA-Konzentration im Wurzelgewebe (z.B. durch Trockenstress), pH-Wert der Rhizosph{\"a}re und den Ern{\"a}hrungsbedingungen der Pflanze. Erh{\"o}hter radialer Wasserfluss, erh{\"o}hte ABA-Wurzelgewebegehalte und niedriger pH-Wert der Rhizosph{\"a}re verst{\"a}rken den apoplastischen Bypass-Fluss unter physiologischen Bedingungen. Geringe Wassertransportraten, niedrige ABA-Konzentrationen im Gewebe, alkalische pH-Werte der Rhizosph{\"a}re und Ammoniumern{\"a}hrung verst{\"a}rken dagegen den symplastischen Beitrag zum ABA-Transport. In der vorliegenden Arbeit konnten die sich widersprechenden Theorien bez{\"u}glich des ABA-Effektes auf die hydraulische Leitf{\"a}higkeit von Wurzeln erkl{\"a}rt werden. ABA erh{\"o}ht {\"u}ber einen Zeitraum von 2 Stunden die Zellleitf{\"a}higkeit (Lp) mit einem Maximum 1 Stunde nach ABA-Inkubation. Dies wirkt sich in einem verst{\"a}rktem Lpr von intakten Wurzelsystemen aus, das einem {\"a}hnlichen Zeitmuster folgt. Pflanzen sind demnach in der Lage, mittels ABA den zellul{\"a}ren Wassertransportweg reversibel zu optimieren, um so unter mildem Trockenstress, wie er in einem gerade eintrocknenden Boden auftritt, die Pflanze mit ausreichend Wasser zu versorgen. Tritt ein l{\"a}nger andauernder Wassermangel ein, versperrt die Pflanze diesen Weg wieder. Dieser transiente Effekt erkl{\"a}rt auch die aus der Literatur bekannten stimulierenden und inhibierenden ABA-Wirkungen. Durch den verst{\"a}rkten Wasserfluss zu Beginn der Stresssituation erzeugt ABA auf diese Weise ein sich selbst verst{\"a}rkendes, wurzelb{\"u}rtiges Hormonsignal in den Spross. Das Blatt erreicht in effektiver Weise eine ABA-Menge, die ausreichend ist, um die Stomata zu schließen. Es folgt eine Reduktion der Transpiration. Eine weiter andauernde Erh{\"o}hung des symplastischen Wassertransportweges w{\"a}re ohne physiologische Bedeutung. Regulierende Membranstrukturen f{\"u}r diesen Vorgang k{\"o}nnten ABA-sensitive Wasserkan{\"a}le (Aquaporine) der Plasmamembran sein. Es wurde gezeigt, dass der Rezeptor f{\"u}r diesen Vorgang innerhalb von corticalen Maiswurzelzellen lokalisiert und hochspezifisch f{\"u}r (+)-cis-trans-ABA ist. Die Signaltransduktion f{\"u}r diesen Kurzzeiteffekt erfolgt nicht mittels verst{\"a}rkter Aquaporintranskription, k{\"o}nnte aber {\"u}ber ABA-induzierte Aktivierung (Phosphorylierung), oder Einbau von Aquaporinen in die Zellmembran ablaufen. Der Abscisins{\"a}ure-Transport ist ein komplexer Vorgang. Er wird beeinflusst durch Umwelteinfl{\"u}sse, Wurzelanatomie, ist gekoppelt mit dem Wasserfluss und durch sich selbst variierbar. Herk{\"o}mmliche Vorstellungen einer simplen Hormondiffusion k{\"o}nnen diesen regulierbaren Vorgang nicht mehr beschreiben. Pflanzen besitzen ein ABA-Transportsystem, das schnell, effektiv und an sich ver{\"a}ndernde Umweltbedingungen adaptierbar ist.}, subject = {Sonnenblume}, language = {de} } @phdthesis{Klengel2008, author = {Klengel, Torsten}, title = {Molekulare Charakterisierung der Carboanhydrase Nce103 im Kontext des CO2 induzierten Polymorphismus in Candida albicans}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-34573}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Die Detektion von Umweltsignalen und die gezielte zellul{\"a}re Reaktion ist eine zentrale und f{\"u}r das {\"U}berleben aller Lebewesen essentielle F{\"a}higkeit. Candida albicans, als dominierender humanpathogener Pilz, ist hochgradig verschiedenen biochemischen und physikalischen Umweltbedingungen ausgesetzt, welche sowohl die Zellmorphologie als auch die Virulenz dieses Erregers beeinflussen. In der vorliegenden Arbeit wurde der Einfluss von Kohlendioxid, als ubiquit{\"a}r vorkommendes Gasmolek{\"u}l, auf die Zellmorphologie und Virulenz untersucht. Erh{\"o}hte Konzentrationen von Kohlendioxid stellen ein {\"a}ußerst robustes Umweltsignal dar, welches die morphologische Transition vom Hefewachstum zum hyphalen Wachstum, einem Hauptvirulenzfaktor, in Candida albicans stimuliert. In diesem Zusammenhang wurde die Rolle der putativen Carboanhydrase Nce103 durch die Generation von knock - out Mutanten untersucht. Die Disruption von NCE103 in C. albicans f{\"u}hrt zu einem Kohlendioxid - abh{\"a}ngigen Ph{\"a}notyp, welcher Wachstum unter aeroben Bedingungen (ca. 0,033\% CO2) nicht zul{\"a}sst, jedoch unter Bedingungen mit einem erh{\"o}hten CO2 Gehalt von ca. 5\% erm{\"o}glicht. NCE103 ist also f{\"u}r das Wachstum von C. albicans in Wirtsnischen mit aeroben Bedingungen essentiell. Durch Untersuchungen zur Enzymkinetik mittels Stopped - flow wurde in dieser Arbeit gezeigt, dass Nce103 die Funktion einer Carboanhydrase erf{\"u}llt. Die biochemische Funktion dieser Carboanhydrase besteht in der Fixation von CO2 bzw. HCO3\&\#713; in der Zelle zur Unterhaltung der wesentlichen metabolischen Reaktionen. Weiterhin konnte gezeigt werden, dass die Induktion hyphalen Wachstums durch CO2 in C. albicans nicht durch den Transport von CO2 mittels des Aquaporins Aqy1 beeinflusst wird. CO2 bzw. HCO3\&\#713; aktiviert in der Zelle direkt eine Adenylylcyclase (Cdc35), welche sich grundlegend von den bisher gut charakterisierten G-Protein gekoppelten Adenylylcylasen unterscheidet. Die Generation von cAMP beeinflusst in der Folge direkt die Transkription hyphenspezifischer Gene und nachfolgend die morphologische Transition vom Hefewachstum zum elongierten, hyphalen Wachstum. Dieser Mechanismus konnte sowohl in Candida albicans als auch in Cryptococcus neoformans nachgewiesen werden, was auf einen panfungal konservierten Signaltransduktionsmechanismus schliessen l{\"a}sst. Die Inhibition dieser spezifischen Kaskade er{\"o}ffnet neue Ans{\"a}tze zur Entwicklung spezifischer antimykotischer Wirkstoffe.}, subject = {Candida}, language = {de} } @phdthesis{Siefritz2002, author = {Siefritz, Franka}, title = {Expression and Function of the Nicotiana tabacum Aquaporin NtAQP1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3053}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Die vorliegende Arbeit zeigt die Korrelation zwischen r{\"a}umlichem und zeitlichem Expressionsmuster von dem Aquaporin NtAQP1 und seiner Funktion im Wasserhaushalt in planta. Immunologische in situ-Studien deuteten auf eine NtAQP1-Protein-Akkumulation in der Wurzelexodermis und -endodermis, im Cortex, in der N{\"a}he der Leitb{\"u}ndel, im Xylemparenchym und in Zellen der Atemh{\"o}hle hin. Das Aquaporin wurde auch in longitudinalen Zellreihen der Petiolen in erh{\"o}hten Mengen gefunden. Expressionsstudien mit transgenen Pflanzen (Ntaqp1-Promotor::gus oder ::luc) best{\"a}tigten die NtAQP1-Akkumulation in der Wurzel, dem Spross und den Petiolen, lokalisierten dessen Expression aber auch in Pollen, Adventivwurzel und Blatthaaren. Die Ntaqp1-Expression wurde w{\"a}hrend Wachstumsprozessen wie Sprossorientierung nach Gravistimulation oder Photostimulation, Samenkeimung, aber auch w{\"a}hrend der vergleichsweise schnellen circadianen Blattbewegung induziert. Die Expression wurde weiterhin durch Phytohormone, im Speziellen durch Gibberellins{\"a}ure (GA) und osmotischen Stress stimuliert. Weitere Analysen hoben eine diurnale und sogar circadiane Expression von Ntaqp1 in Wurzeln und Petiolen hervor. Die funktionelle Analyse des Aquaporins wurde mittels reverser Genetik und biophysikalischen Studien durchgef{\"u}hrt. Die Antisense-Technik wurde benutzt, um die NtAQP1-Expression in Tabakpflanzen zu reduzieren. Die Antisense (AS)-Pflanzen zeigten eine starke Verringerung der Ntaqp1-mRNA, eine weniger ausgepr{\"a}gte Verminderung der hoch homologen NtPIP1a-mRNA und keinen Effekt auf die Expression anderer Aquaporin-Genfamilien (PIP2, TIP). Die Funktion von NtAQP1 auf zellul{\"a}rer Ebene wurde mit einer hierf{\"u}r neuentwickelten Apparatur untersucht. Der experimentelle Aufbau erm{\"o}glichte die Aufzeichnung der osmotisch induzierten Protoplasten-Volumenzunahme. Die Reduktion von NtAQP1 durch die Antisense-Expression verminderte die zellul{\"a}re Wasserpermeabilit{\"a}t um mehr als 50 \%. Die Funktion von NtAQP1 in der Gesamtpflanze wurde z.B. durch die "High-pressure flow meter" Methode bestimmt. Diese Messungen ergaben eine Reduktion der hydraulischen Wurzelleitf{\"a}higkeit pro Wurzeloberfl{\"a}cheneinheit (KRA) der Wurzeln der AS-Linien um mehr als 50 \%. Die KRA wies eine starke diurnale und circadiane Schwankung auf, mit einem Maximum in der Mitte der Lichtperiode, {\"a}hnlich dem Verlauf des Expressionsmusters von Ntaqp1 in Wurzeln. Unter gut gew{\"a}sserten Bedingungen ergaben Gaswechsel-, Spross- (Ystem) und Blatt- Wasserpotenial (Yleaf)-Messungen unterschiedliche Werte in AS- und Kontrollpflanzen. In wasserlimitierender Umgebung zeigten AS-Pflanzen jedoch ein st{\"a}rker negativeres Y als Kontrollpflanzen, obwohl eine weitere Abnahme der Transpiration in AS-Pflanzen beobachtet werden konnte. Quantitative Analysen belegten eine st{\"a}rker ausgepr{\"a}gte Welkreaktion in den AS- als in den Kontrollpflanzen. Quantitative Studien der Blattbewegung von AS- verglichen mit Kontrollpflanzen hoben eine drastische Reduktion in Geschwindigkeit und Ausmaß der Reaktion hervor. Folgende Schlussfolgerungen konnten gezogen werden. NtAQP1 wurde an Orten mit erwartet hohem Wasserfluss von und zum Apoplasten oder Symplasten exprimiert. Außerdem deuteten das spezifische Verteilungsmuster und die zeitliche Expression von NtAQP1 in Petiolen und dem sich biegenden Spross auf eine Beteiligung in der transzellul{\"a}ren Wasserbewegung hin. Die Reduktion von NtAQP1 durch die Antisense-Expression verringerte die zellul{\"a}re Pos. Die NtAQP1-Funktion erh{\"o}ht also eindeutig die Membranwasserpermeabilit{\"a}t von Tabak-Wurzelprotoplasten. Die Abnahme der spezifischen hydraulischen Wurzelleitf{\"a}higkeit (KRA) befand sich in der gleichen Gr{\"o}ßenordnung wie die Verringerung der mittleren zellul{\"a}ren Wasserpermeabilit{\"a}t. Dies weist darauf hin, dass die Aquaporin-Expression essentiell f{\"u}r die Aufrechterhaltung der nat{\"u}rlichen Wurzelleitf{\"a}higkeit ist. Die Verringerung von KRA in AS -Pflanzen k{\"o}nnte der erste sichere Beweis daf{\"u}r sein, dass der Weg der Wasseraufnahme von der Wurzeloberfl{\"a}che in das Xylem den {\"U}bergang {\"u}ber Membranen einschließt. Die Reduktion von NtAQP1 resultierte in einem Wasserstresssignal, das ein Schließen der Stomata zur Folge hatte. NtAQP1 scheint an der Vermeidung von Wasserstress in Tabak beteiligt zu sein. NtAQP1 spielt eine essentielle Rolle bei schnellen Pflanzenbewegungen und der transzellul{\"a}ren Wasserverschiebung.}, subject = {Tabak}, language = {en} } @phdthesis{Tang2021, author = {Tang, Ruijing}, title = {Optogenetic Methods to Regulate Water Transport and Purify Proteins}, doi = {10.25972/OPUS-23173}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231736}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Water transport through the water channels, aquaporins (AQPs), is involved in epithelial fluid secretion and absorption, cell migration, brain edema, adipocyte metabolism, and other physiological or pathological functions. Modulation of AQP function has therapeutic potential in edema, cancer, obesity, brain injury, glaucoma, etc. The function of AQPs is in response to the osmotic gradient that is formed by the concentration differences of ions or small molecules. In terms of brain edema, it is a pathophysiological condition, resulting from dysfunction of the plasma membrane that causes a disorder of intracellular ion homeostasis and thus increases intracellular fluid content. Optogenetics can be used to regulate ion transport easily by light with temporal and spatial precision. Therefore, if we control the cell ion influx, boosting the water transport through AQPs, this will help to investigate the pathological mechanisms in e.g. brain edema. To this end, I investigated the possibility for optogenetic manipulating water transport in Xenopus oocytes. The main ions in Xenopus oocyte cytoplasm are ~10 mM Na+, ~50 mM Cl- and ~100 mM K+, similar to the mammalian cell physiological condition. Three light-gated channels, ChR2-XXM 2.0 (light-gated cation channel), GtACR1 (light-gated anion channel) and SthK-bPAC (light-gated potassium channel), were used in my study to regulate ion transport by light and thus manipulate the osmotic gradient and water transport. To increase water flow, I also used coexpression of AQP1. When expressing ChR2-XXM 2.0 and GtACR1 together, mainly Na+ influx was triggered by ChR2-XXM2.0 under blue light illumination, which then made the membrane potential more positive and facilitated Cl- influx by GtACR1. Due to this inward movement of Na+ and Cl-, the osmotic gradient was formed to trigger water influx through AQP1. Large amounts of water uptake can speedily increase the oocyte volume until membrane rupture. Next, when co-expressing GtACR1 and SthK-bPAC, water efflux will be triggered with blue light because of the light-gated KCl efflux and then oocyte shrinking could be observed. I also developed an optogenetic protein purification method based on a light-induced protein interactive system. Currently, the most common protein purification method is based on affinity chromatography, which requires different chromatography columns and harsh conditions, such as acidic pH 4.5 - 6 and/or adding imidazole or high salt concentration, to elute and collect the purified proteins. The change in conditions could influence the activity of target proteins. So, an easy and flexible protein purification method based on the photo-induced protein interactive system iLID was designed, which regulates protein binding with light in mild conditions and does not require a change of solution composition. For expression in E. coli, the blue light-sensitive part of iLID, the LOV2 domain, was fused with a membrane anchor and expressed in the plasma membrane, and the other binding partner, SspB, was fused with the protein of interest (POI), expressed in the cytosol. The plasma membrane fraction and the soluble cytosolic fraction of E. coli can be easily separated by centrifugation. The SspB-POI can be then captured to the membrane fraction by light stimulation and released to clean buffer in the dark after washing. This method does not require any specific column and functions in mild conditions, which are very flexible at scale and will facilitate extensive protein engineering and purification of proteins, sensitive to changed buffer conditions.}, language = {en} }