@phdthesis{Heydarian2021, author = {Heydarian, Motaharehsadat}, title = {Development of human 3D tissue models for studying \(Neisseria\) \(gonorrhoeae\) infection}, doi = {10.25972/OPUS-20496}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204967}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Gonorrhea is the second most common sexually transmitted infection worldwide and is caused by Gram-negative, human-specific diplococcus Neisseria gonorrhoeae. It colonizes the mucosal surface of the female reproductive tract and the male urethra. A rapid increase in antibiotic resistance makes gonorrhea a serious threat to public health worldwide. Since N. gonorrhoeae is a human-specific pathogen, animal infection models are not able to recapitulate all the features of infection. Therefore, a realistic in vitro cell culture model is urgently required for studying the gonorrhea infection. In this study, we established and characterized three independent 3D tissue models based on the porcine small intestinal submucosa (SIS) scaffold by co-culturing human dermal fibroblasts with human colorectal carcinoma, endometrial epithelial, and male uroepithelial cells. The histological, immunohistochemical, and ultra-structural analysis showed that the 3D SIS scaffold-based models closely mimic the main characteristics of the site of gonococcal infection in the human host including the formation of epithelial monolayer, underlying connective tissue, mucus production, tight junction (TJ), and microvilli. In addition, functional analysis such as transepithelial electrical resistance (TEER) and barrier permeability indicated high barrier integrity of the cell layer. We infected the established 3D tissue models with different N. gonorrhoeae strains and derivatives presenting various phenotypes regarding adhesion and invasion. The results showed disruption of TJs and growing the interleukins production in response to the infection, which depends on the type of strain and cell. In addition, the 3D tissue models supported bacterial survival, which provided an appropriate in vitro model for long-term infection study. This could be mainly because of the high resilience of the 3D tissue models based on the SIS scaffold to the infection in terms of alteration in permeability, cell destruction, and bacterial transmigration. During gonorrhea infection, a high level of neutrophils migrates to the site of infection. The studies also showed that N. gonorrhoeae can survive or even replicate inside the neutrophils. Therefore, studying the interaction between neutrophils and N. gonorrhoeae is substantially under scrutiny. For this purpose, we generated a 3D tissue model by triple co-culturing of human primary fibroblast cells, human colorectal carcinoma cells, and human umbilical vein endothelial cells. The tissue model was subsequently infected by N. gonorrhoeae. A perfusion-based bioreactor system was employed to recreate blood flow in the side of endothelial cells and consequently study human neutrophils transmigration to the site of infection. We observed neutrophils activation upon the infection. Furthermore, we demonstrated the uptake of N. gonorrhoeae by human neutrophils and reverse transmigration of neutrophils to the basal side carrying N. gonorrhoeae. In summary, the introduced 3D tissue models in this research represent a promising tool to investigate N. gonorrhoeae infections under close-to-natural conditions.}, subject = {3D-Gewebemodell}, language = {en} } @phdthesis{Schwedhelm2019, author = {Schwedhelm, Ivo Peter}, title = {A non-invasive microscopy platform for the online monitoring of hiPSC aggregation in suspension cultures in small-scale stirred tank bioreactors}, doi = {10.25972/OPUS-19298}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192989}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The culture of human induced pluripotent stem cells (hiPSCs) at large-scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Suspension cul- tures of hiPSCs are characterized by the self-aggregation of single cells into macroscopic cell aggre- gates that increase in size over time. The development of these free-floating aggregates is dependent on the culture vessel and thus represents a novel process parameter that is of particular interest for hiPSC suspension culture scaling. Further, aggregates surpassing a critical size are prone to spon- taneous differentiation or cell viability loss. In this regard, and, for the first time, a hiPSC-specific suspension culture unit was developed that utilizes in situ microscope imaging to monitor and to characterize hiPSC aggregation in one specific CSTR setup to a statistically significant degree while omitting the need for error-prone and time-intensive sampling. For this purpose, a small-scale CSTR system was designed and fabricated by fused deposition modeling (FDM) using an in-house 3D- printer. To provide a suitable cell culture environment for the CSTR system and in situ microscope, a custom-built incubator was constructed to accommodate all culture vessels and process control devices. Prior to manufacture, the CSTR design was characterized in silico for standard engineering parameters such as the specific power input, mixing time, and shear stress using computational fluid dynamics (CFD) simulations. The established computational model was successfully validated by comparing CFD-derived mixing time data to manual measurements. Proof for system functionality was provided in the context of long-term expansion (4 passages) of hiPSCs. Thereby, hiPSC aggregate size development was successfully tracked by in situ imaging of CSTR suspensions and subsequent automated image processing. Further, the suitability of the developed hiPSC culture unit was proven by demonstrating the preservation of CSTR-cultured hiPSC pluripotency on RNA level by qRT-PCR and PluriTest, and on protein level by flow cytometry.}, subject = {Induzierte pluripotente Stammzelle}, language = {en} } @article{SeefriedMuellerDeubertSchwarzetal.2010, author = {Seefried, Lothar and Mueller-Deubert, Sigrid and Schwarz, Thomas and Lind, Thomas and Mentrup, Birgit and Kober, Melanie and Docheva, Denitsa and Liedert, Astrid and Kassem, Moustapha and Ignatius, Anita and Schieker, Matthias and Claes, Lutz and Wilke, Winfried and Jakob, Franz and Ebert, Regina}, title = {A small scale cell culture system to analyze mechanobiology using reporter gene constructs and polyurethane dishes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68099}, year = {2010}, abstract = {Mechanical forces are translated into biochemical signals and contribute to cell differentiation and phenotype maintenance. Mesenchymal stem cells and their tissuespecific offspring, as osteoblasts and chondrocytes, cells of cardiovascular tissues and lung cells are sensitive to mechanical loading but molecules and mechanisms involved have to be unraveled. It is well established that cellular mechanotransduction is mediated e.g. by activation of the transcription factor SP1 and by kinase signaling cascades resulting in the activation of the AP1 complex. To investigate cellular mechanisms involved in mechanotransduction and to analyze substances, which modulate cellular mechanosensitivity reporter gene constructs, which can be transfected into cells of interest might be helpful. Suitable small-scale bioreactor systems and mechanosensitive reporter gene constructs are lacking. To analyze the molecular mechanisms of mechanotransduction and its crosstalk with biochemically induced signal transduction, AP1 and SP1 luciferase reporter gene constructs were cloned and transfected into various cell lines and primary cells. A newly developed bioreactor and small-scale 24-well polyurethane dishes were used to apply cyclic stretching to the transfected cells. 1 Hz cyclic stretching for 30 min in this system resulted in a significant stimulation of AP1 and SP1 mediated luciferase activity compared to unstimulated cells. In summary we describe a small-scale cell culture/bioreactor system capable of analyzing subcellular crosstalk mechanisms in mechanotransduction, mechanosensitivity of primary cells and of screening the activity of putative mechanosensitizers as new targets, e.g. for the treatment of bone loss caused by both disuse and signal transduction related alterations of mechanotransduction.}, subject = {Bioreaktor}, language = {en} } @phdthesis{WeyhmuellerReboredo2014, author = {Weyhm{\"u}ller Reboredo, Jenny}, title = {Tissue Engineering eines Meniskus - Vom Biomaterial zum Implantat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108477}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Der Meniskus, ein scheibenf{\"o}rmiger Faserknorpel, spielt im Kniegelenk eine bedeutende Rolle, weil er Kr{\"a}fte und Druck im Kniegelenk gleichm{\"a}ßig verteilt, St{\"o}ße d{\"a}mpft sowie der Kraft{\"u}bertragung und Stabilisierung dient. Durch die Entfernung des Gewebes, der sogenannten Totalmeniskektomie, nach einer Meniskusverletzung oder einem Riss, ver{\"a}ndern sich die mechanischen Eigenschaften des Gelenks stark und verursachen durch die erh{\"o}hte Belastung der Gelenkfl{\"a}chen Arthrose. Arthrose ist weltweit die H{\"a}ufigste aller Gelenkerkrankungen. Der Erhalt der k{\"o}rperlichen Leistungsf{\"a}higkeit und Mobilit{\"a}t bis ins hohe Alter sowie die Bewahrung der Gesundheit von Herz-Kreislauf- und Stoffwechselorganen z{\"a}hlen aufgrund des demografischen Wandels zu den großen medizinischen Herausforderungen. Die Erkrankung des muskuloskelettalen Systems stellte 2010 im Bundesgebiet die am h{\"a}ufigsten vorkommende Krankheitsart dar. W{\"a}hrend Risse in den {\"a}ußeren Teilen des Meniskus aufgrund des Anschlusses an das Blutgef{\"a}ßsystem spontan heilen k{\"o}nnen, k{\"o}nnen sie dies in tieferen Zonen nicht. Durch die begrenzte Heilungsf{\"a}higkeit des Knorpels bleibt langfristig der Einsatz eines Ersatzgewebes die einzige therapeutische Alternative. In der vorliegenden Arbeit wurde als therapeutische Alternative erfolgreich ein vaskularisiertes Meniskusersatzgewebe mit Methoden des Tissue Engineering entwickelt. Es soll in Zukunft als Implantat Verwendung finden. Tissue Engineering ist ein interdisziplin{\"a}res Forschungsfeld, in dem Gewebe außerhalb des K{\"o}rpers generiert werden. Schl{\"u}sselkomponenten sind Zellen, die aus einem Organismus isoliert werden, und Tr{\"a}gerstrukturen, die mit Zellen besiedelt werden. Die Biomaterialien geben den Zellen eine geeignete Umgebung, die die Extrazellul{\"a}re Matrix (EZM) ersetzen soll, um die Funktion der Zellen beizubehalten, eigene Matrix zu bilden. Zum Erhalt eines funktionelles Gewebes werden oftmals dynamische Kultursysteme, sogenannte Bioreaktoren, verwendet, die nat{\"u}rliche Stimuli wie beispielsweise den Blutfluss oder mechanische Kompressionskr{\"a}fte w{\"a}hrend der in vitro Reifungsphase des Gewebes, zur Verf{\"u}gung stellen. Das Gewebekonstrukt wurde auf Basis nat{\"u}rlicher Biomaterialien aufgebaut, unter Verwendung ausschließlich prim{\"a}rer Zellen, die sp{\"a}ter direkt vom Patienten gewonnen werden k{\"o}nnen und damit Abstoßungsreaktionen auszuschließen sind. Da der Meniskus teilvaskularisiert ist und die in vivo Situation des Gewebes bestm{\"o}glich nachgebaut werden sollte, wurden Konstrukte mit mehreren Zelltypen, sogenannte Ko-Kulturen aufgebaut. Neben mikrovaskul{\"a}ren Endothelzellen (mvEZ) und Meniskuszellen (MZ) erfolgten Versuche mit mesenchymalen Stammzellen (MSZ). Zur Bereitstellung einer zelltypspezifischen Matrixumgebung, diente den mvEZ ein St{\"u}ck Schweinedarm mit azellularisierten Gef{\"a}ßstrukturen (BioVaSc®) und den MZ diente eine geeig- nete Kollagenmatrix (Kollagen Typ I Hydrogel). Die Validierung und Charakterisierung des aufgebauten 3D Meniskuskonstrukts, welches in einem dynamischen Perfusions-Bioreaktorsystem kultiviert wurde, erfolgte mit knorpeltypischen Matrixmarkern wie Aggrekan, Kollagen Typ I, II und X sowie mit den Transkriptionsfaktoren RunX2 und Sox9, die in der Knorpelentstehung von großer Bedeutung sind. Zus{\"a}tzlich erfolgten Auswertungen mit endothelzellspezifischen Markern wie vWF, CD31 und VEGF, um die Vaskularisierung im Konstrukt nachzuweisen. Analysiert wurden auch die Zellvitalit{\"a}ten in den Konstrukten. Aufgrund einer nur geringen Verf{\"u}gbarkeit von MZ wurden Kulturans{\"a}tze mit alternativen Zellquellen, den MSZ, durchgef{\"u}hrt. Daf{\"u}r erfolgte zun{\"a}chst deren Isolation und Charakterisierung und die Auswahl einer geeigneten 3D Kollagenmatrix. Die beste Zellintegration der MSZ konnte auf einer eigens hergestellten elektrogesponnenen Matrix beobachtet werden. Die Matrix besteht aus zwei unterschiedlichen Kollagentypen, die auf insgesamt f{\"u}nf Schichten verteilt sind. Die Fasern besitzen weiter unterschiedliche Ausrichtungen. W{\"a}hrend die Kollagen Typ I Fasern in den {\"a}ußeren Schichten keiner Ausrichtung zugeh{\"o}ren, liegen die Kollagen Typ II Fasern in der mittleren Schicht parallel zueinander. Der native Meniskus war f{\"u}r den Aufbau einer solchen Kollagen-Tr{\"a}gerstruktur das nat{\"u}rliche Vorbild, das imitiert werden sollte. Nach der Besiedelung der Matrix mit MSZ, konnte eine Integration der Zellen bereits nach vier Tagen bis in die Mittelschicht sowie eine spontane chondrogene Differenzierung nach einer insgesamt dreiw{\"o}chigen Kultivierung gezeigt werden. Das Biomaterial stellt in Hinblick auf die Differenzierung der Zellen ohne die Zugabe von Wachstumsfaktoren eine relevante Bedeutung f{\"u}r klinische Studien dar. Zur Kultivierung des 3D Meniskuskonstrukts wurde ein Bioreaktor entwickelt. Mit diesem k{\"o}nnen neben Perfusion der Gef{\"a}ßsysteme zus{\"a}tzlich Kompressionskr{\"a}fte sowie Scherspannungen auf das Ersatzgewebe appliziert und die Differenzierung von MZ bzw. MSZ w{\"a}hrend der in vitro Kultur {\"u}ber mechanische Reize stimuliert werden. Ein anderes Anwendungsfeld f{\"u}r den neuartigen Bioreaktor ist seine Verwendung als Pr{\"u}ftestsystem f{\"u}r die Optimierung und Qualit{\"a}tssicherung von Gewebekonstrukten.}, subject = {Tissue Engineering}, language = {de} }