@phdthesis{Balagurin2022, author = {Balagurin, Oleksii}, title = {Designoptimierung von Sternsensoren f{\"u}r Pico- und Nanosatelliten}, doi = {10.25972/OPUS-25896}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258966}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die Raumfahrt ist eine der konservativsten Industriebranchen. Neue Entwicklungen von Komponenten und Systemen beruhen auf existierenden Standards und eigene Erfahrungen der Entwickler. Die Systeme sollen in einem vorgegebenen engen Zeitrahmen projektiert, in sehr kleiner St{\"u}ckzahl gefertigt und schließlich aufwendig qualifiziert werden. Erfahrungsgem{\"a}ß reicht die Zeit f{\"u}r Entwicklungsiterationen und weitgehende Perfektionierung des Systems oft nicht aus. Fertige Sensoren, Subsysteme und Systeme sind Unikate, die nur f{\"u}r eine bestimme Funktion und in manchen F{\"a}llen sogar nur f{\"u}r bestimmte Missionen konzipiert sind. Eine Neuentwicklung solcher Komponenten ist extrem teuer und risikobehaftet. Deswegen werden flugerprobte Systeme ohne {\"A}nderungen und Optimierung mehrere Jahre eingesetzt, ohne Technologiefortschritte zu ber{\"u}cksichtigen. Aufgrund des enormen finanziellen Aufwandes und der Tr{\"a}gheit ist die konventionelle Vorgehensweise in der Entwicklung nicht direkt auf Kleinsatelliten {\"u}bertragbar. Eine dynamische Entwicklung im Low Cost Bereich ben{\"o}tigt eine universale und f{\"u}r unterschiedliche Anwendungsbereiche leicht modifizierbare Strategie. Diese Strategie soll nicht nur flexibel sein, sondern auch zu einer m{\"o}glichst optimalen und effizienten Hardwarel{\"o}sung f{\"u}hren. Diese Arbeit stellt ein Software-Tool f{\"u}r eine zeit- und kosteneffiziente Entwicklung von Sternsensoren f{\"u}r Kleinsatelliten vor. Um eine maximale Leistung des Komplettsystems zu erreichen, soll der Sensor die Anforderungen und Randbedingungen vorgegebener Anwendungen erf{\"u}llen und dar{\"u}ber hinaus f{\"u}r diese Anwendungen optimiert sein. Wegen der komplexen Zusammenh{\"a}nge zwischen den Parametern optischer Sensorsysteme ist keine „straightforward" L{\"o}sung des Problems m{\"o}glich. Nur durch den Einsatz computerbasierter Optimierungsverfahren kann schnell und effizient ein bestm{\"o}gliches Systemkonzept f{\"u}r die gegebenen Randbedingungen ausgearbeitet werden.}, subject = {Sternsensor}, language = {de} } @techreport{RieglerKayal2022, type = {Working Paper}, author = {Riegler, Clemens and Kayal, Hakan}, title = {VELEX: Venus Lightning Experiment}, doi = {10.25972/OPUS-28248}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282481}, pages = {6}, year = {2022}, abstract = {Lightning has fascinated humanity since the beginning of our existence. Different types of lightning like sprites and blue jets were discovered, and many more are theorized. However, it is very likely that these phenomena are not exclusive to our home planet. Venus's dense and active atmosphere is a place where lightning is to be expected. Missions like Venera, Pioneer, and Galileo have carried instruments to measure electromagnetic activity. These measurements have indeed delivered results. However, these results are not clear. They could be explained by other effects like cosmic rays, plasma noise, or spacecraft noise. Furthermore, these lightning seem different from those we know from our home planet. In order to tackle these issues, a different approach to measurement is proposed. When multiple devices in different spacecraft or locations can measure the same atmospheric discharge, most other explanations become increasingly less likely. Thus, the suggested instrument and method of VELEX incorporates multiple spacecraft. With this approach, the question about the existence of lightning on Venus could be settled.}, language = {en} }