@article{BelaidiRauchZhangetal.2019, author = {Belaidi, Houmam and Rauch, Florian and Zhang, Zuolun and Latouche, Camille and Boucekkine, Abdou and Marder, Todd B. and Halet, Jean-Francois}, title = {Insights into the optical properties of triarylboranes with strongly electron-accepting bis(fluoromesityl)boryl groups: when theory meets experiment}, series = {ChemPhotoChem}, volume = {4}, journal = {ChemPhotoChem}, number = {3}, doi = {10.1002/cptc.201900256}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205600}, pages = {173-180}, year = {2019}, abstract = {The photophysical properties (absorption, fluorescence and phosphorescence) of a series of triarylboranes of the form 4-D-C\(_6\)H\(_4\)-B(Ar)\(_2\) (D=\(^t\)Bu or NPh\(_2\); Ar=mesityl (Mes) or 2,4,6-tris(trifluoromethylphenyl (Fmes)) were analyzed theoretically using state-of-the-art DFT and TD-DFT methods. Simulated emission spectra and computed decay rate constants are in very good agreement with the experimental data. Unrestricted electronic computations including vibronic contributions explain the unusual optical behavior of 4-\(^t\)Bu-C\(_6\)H\(_4\)-B(Fmes)\(_2\) 2, which shows both fluorescence and phosphorescence at nearly identical energies (at 77 K in a frozen glass). Analysis of the main normal modes responsible for the phosphorescence vibrational fine structure indicates that the bulky tert-butyl group tethered to the phenyl ring is strongly involved. Interestingly, in THF solvent, the computed energies of the singlet and triplet excited states are very similar for compound 2 only, which may explain why 2 shows phosphorescence in contrast to the other members of the series.}, language = {en} } @article{HattoriMichailSchmiedeletal.2019, author = {Hattori, Yohei and Michail, Evripidis and Schmiedel, Alexander and Moos, Michael and Holzapfel, Marco and Krummenacher, Ivo and Braunschweig, Holger and M{\"u}ller, Ulrich and Pflaum, Jens and Lambert, Christoph}, title = {Luminescent Mono-, Di-, and Tri-radicals: Bridging Polychlorinated Triarylmethyl Radicals by Triarylamines and Triarylboranes}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {68}, doi = {10.1002/chem.201903007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208162}, pages = {15463-15471}, year = {2019}, abstract = {Up to three polychlorinated pyridyldiphenylmethyl radicals bridged by a triphenylamine carrying electron withdrawing (CN), neutral (Me), or donating (OMe) groups were synthesized and analogous radicals bridged by tris(2,6-dimethylphenyl)borane were prepared for comparison. All compounds were as stable as common closed-shell organic compounds and showed significant fluorescence upon excitation. Electronic, magnetic, absorption, and emission properties were examined in detail, and experimental results were interpreted using DFT calculations. Oxidation potentials, absorption and emission energies could be tuned depending on the electron density of the bridges. The triphenylamine bridges mediated intramolecular weak antiferromagnetic interactions between the radical spins, and the energy difference between the high spin and low spin states was determined by temperature dependent ESR spectroscopy and DFT calculations. The fluorescent properties of all radicals were examined in detail and revealed no difference for high and low spin states which facilitates application of these dyes in two-photon absorption spectroscopy and OLED devices.}, language = {en} }