@phdthesis{Weigold2015, author = {Weigold, Lena}, title = {Ermittlung des Zusammenhangs zwischen mechanischer Steifigkeit und W{\"a}rmetransport {\"u}ber das Festk{\"o}rperger{\"u}st bei hochpor{\"o}sen Materialien}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124806}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Ziel dieser Arbeit ist es, ein verbessertes Verst{\"a}ndnis f{\"u}r den Zusammenhang zwischen mechanischer Steifigkeit und W{\"a}rmetransport {\"u}ber das Festk{\"o}rperger{\"u}st bei hochpor{\"o}sen Materialien zu erlangen. Im Fokus dieser Arbeit steht die Fragestellung, wie mechanische Steifigkeit und W{\"a}rmeleitf{\"a}higkeit bei hochpor{\"o}sen Materialien miteinander zusammenh{\"a}ngen und ob es m{\"o}glich ist, diese beiden Eigenschaften durch geometrische Modifikationen der Mikrostruktur unabh{\"a}ngig voneinander zu ver{\"a}ndern. Die durchgef{\"u}hrten Untersuchungen haben gezeigt, dass ein Großteil der mikrostrukturellen Modifikationen beide Materialeigenschaften beeinflussen und die mechanische Steifigkeit in der Regel eng mit dem W{\"a}rmetransport {\"u}ber das Festk{\"o}rperger{\"u}st verkn{\"u}pft ist. Es konnte jedoch auch nachgewiesen werden, dass die mechanische Steifigkeit bei hochpor{\"o}sen Materialien nicht eindeutig mit dem W{\"a}rmetransport {\"u}ber das Festk{\"o}rperger{\"u}st zusammenh{\"a}ngt und spezifische mikrostrukturelle Modifikationen einen st{\"a}rkeren Einfluss auf die mechanische Steifigkeit besitzen, als auf den W{\"a}rmetransport {\"u}ber das Festk{\"o}rperger{\"u}st. Umgekehrt ist diese Aussage nicht ganz so eindeutig. Die theoretische Betrachtung des Zusammenhangs zeigt, dass in die Berechnung der mechanischen Steifigkeit teils andere geometrische Strukturgr{\"o}ßen einfließen, als in die Berechnung des W{\"a}rmetransports {\"u}ber das Festk{\"o}rperger{\"u}st, so dass die mechanische Steifigkeit unabh{\"a}ngig von der W{\"a}rmeleitf{\"a}higkeit ver{\"a}ndert werden kann. Es zeigt sich jedoch auch, dass die meisten strukturellen Ver{\"a}nderungen beide Eigenschaften beeinflussen und die mechanische Steifigkeit aufgrund der Biegedeformation der Netzwerkelemente systematisch st{\"a}rker auf strukturelle Ver{\"a}nderungen reagiert als die W{\"a}rmeleitf{\"a}higkeit der Struktur, so dass die mechanische Steifigkeit in der Regel quadratisch mit der W{\"a}rmeleitf{\"a}higkeit des Festk{\"o}rperger{\"u}stes skaliert. Mit den Methoden der effective-media-theory lassen sich Grenzen ermitteln, innerhalb derer sich mechanische Steifigkeit und W{\"a}rmeleitf{\"a}higkeit unabh{\"a}ngig voneinander variieren lassen. Im experimentellen Teil der Arbeit wurden Probenserien von Polyurethan-Sch{\"a}umen, Polyurea Aerogelen und organisch / anorganischen Hybrid Aerogelen herangezogen, so dass por{\"o}se Materialien mit geordneten, voll vernetzten Mikrostrukturen, mit statistisch isotropen, teilvernetzen Mikrostrukturen, sowie Mikrostrukturen mit anisotropen Charakter in die Untersuchung einbezogen werden konnten. Als Struktureigenschaften, die die mechanische Steifigkeit ungew{\"o}hnlich stark beeinflussen, konnten die Regelm{\"a}ßigkeit der Struktur und der Kr{\"u}mmungsradius der Netzwerkelemente sicher identifiziert werden. Alle weiteren strukturellen Ver{\"a}nderungen f{\"u}hren zu dem ann{\"a}hernd quadratischen Zusammenhang. In einem dritten Abschnitt dieser Arbeit wird das vereinfachte Phononendiffusionsmodell herangezogen, um den Zusammenhang zwischen mechanischer Steifigkeit und W{\"a}rmetransport {\"u}ber das Festk{\"o}rperger{\"u}st bei Aerogelen grundlagenphysikalisch zu modellieren. Zur Diskussion werden die experimentell ermittelten Eigenschaften der isotropen Polyurea Aerogele herangezogen und eine qualitative Modellierung ihrer Schwingungszustandsdichten durchgef{\"u}hrt. Es konnte gezeigt werden, dass die Kombination aus Probendichte und Schallgeschwindigkeit, mit der sich die mechanische Steifigkeit berechnen l{\"a}sst, unter bestimmten Randbedingungen auch die Energie und Transporteigenschaften der Phononen beschreibt, die den W{\"a}rmetransport {\"u}ber das Festk{\"o}rperger{\"u}st bei Aerogelen bestimmen. Die Ergebnisse dieser Arbeit lassen sich zum Beispiel heranziehen, um die Eigenschaften hochpor{\"o}ser Materialien f{\"u}r eine gegebene Anwendung durch mikrostrukturelle Modifikationen optimal zu gestalten.}, subject = {Por{\"o}ser Stoff}, language = {de} } @phdthesis{Mueller2013, author = {M{\"u}ller, Thomas M.}, title = {Computergest{\"u}tztes Materialdesign: Mikrostruktur und elektrische Eigenschaften von Zirkoniumdioxid-Aluminiumoxid Keramiken}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110942}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die Mikrostruktur von Zirkonoxid-Aluminiumoxid Keramiken wurde im Rasterelektronenmikroskop (REM) untersucht und mittels quantitativer Bildanalyse weiter charakterisiert. Die so erhaltenen spezifischen morphologischen Kennwerte wurden mit denen, die an dreidimensionalen Modellstrukturen {\"a}quivalent gewonnen wurden, verglichen. Es wurden modifizierte Voronoistrukturen benutzt, um die beteiligten Phasen in repr{\"a}sentativen Volumenelementen (RVE) auf Voxelbasis zu erzeugen. Poren wurden an den Ecken und Kanten dieser Strukturen nachtr{\"a}glich hinzugef{\"u}g. Nachdem alle relevanten Kennwerte der Modellstrukturen an die realen keramischen Mikrostrukturen angepasst wurden, musste das RVE f{\"u}r die Finite Element Simulationen (FES) geeignet vernetzt werden. Eine einfache {\"U}bernahme der Voxelstrukturen in hexaedrische Elemente f{\"u}hrt zu sehr langen Rechenzeiten, und die erforderliche Genauigkeit der FES konnte nicht erreicht werden. Deshalb wurde zun{\"a}chst eine adaptive Oberfl{\"a}chenvernetzung ausgehend von einem generally classed marching tetrahedra Algorithmus erzeugt. Dabei wurde besonderer Wert auf die Beibehaltung der zuvor angepassten Kennwerte gelegt. Um die Rechenzeiten zu verk{\"u}rzen ohne die Genauigkeit der FES zu beeintr{\"a}chtigen, wurden die Oberfl{\"a}chenvernetzungen dergestalt vereinfacht, dass eine hohe Aufl{\"o}sung an den Ecken und Kanten der Strukturen erhalten blieb, w{\"a}hrend sie an flachen Korngrenzen stark verringert wurde. Auf Basis dieser Oberfl{\"a}chenvernetzung wurden Volumenvernetzungen, inklusive der Abbildung der Korngrenzen durch Volumenelemente, erzeugt und f{\"u}r die FES benutzt. Dazu wurde ein FE-Modell zur Simulation der Impedanzspektren aufgestellt und validiert. Um das makroskopische elektrische Verhalten der polykristallinen Keramiken zu simulieren, mussten zun{\"a}chst die elektrischen Eigenschaften der beteiligten Einzelphasen gemessen werden. Dazu wurde eine Anlage zur Impedanzspektroskopie bis 1000 °C aufgebaut und verwendet. Durch weitere Auswertung der experimentellen Daten unter besonderer Ber{\"u}cksichtigung der Korngrenzeffekte wurden die individuellen Phaseneigenschaften erhalten. Die Zusammensetzung der Mischkeramiken reichte von purem Zirkonoxid (3YSZ) bis zu purem Aluminiumoxid. Es wurde eine sehr gute {\"U}bereinstimmung zwischen den experimentellen und simulierten Werten bez{\"u}glich der betrachteten elektrischen, mechanischen und thermischen Eigenschaften erreicht. Die FES wurden verwendet, um die Einfl{\"u}sse verschiedener mikrostruktureller Parameter, wie Porosit{\"a}t, Korngr{\"o}ße und Komposition, auf das makroskopische Materialverhalten n{\"a}her zu untersuchen.}, subject = {Keramischer Werkstoff}, language = {de} } @phdthesis{Kreutner2018, author = {Kreutner, Jakob}, title = {Charakterisierung des Knochens und seiner Mikrostruktur mit hochaufl{\"o}sender 3D-MRT}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168858}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Neue Therapieans{\"a}tze durch Tissue Engineering erfordern gleichzeitig angepasste Diagnosem{\"o}glichkeiten und nicht-invasive Erfolgskontrollen. Speziell die 3D-MR-Bildgebung ist ein vielversprechendes Instrument, um Parameter mit hoher r{\"a}umlicher Pr{\"a}zision zu quantifizieren. Vor diesem Hintergrund wurden im Rahmen dieser Arbeit neue Ans{\"a}tze f{\"u}r die hochaufl{\"o}sende 3D-MRT in vivo entwickelt und deren Eignung im Bereich des Tissue Engineerings gezeigt. Welchen Vorteil die Quantifizierung von Parametern bietet, konnte im Rahmen einer pr{\"a}-klinischen Studie an einem Modell der H{\"u}ftkopfnekrose gezeigt werden. Der Therapieverlauf wurde zu verschiedenen Zeitpunkten kontrolliert. Trotz der niedrigen r{\"a}umlichen Aufl{\"o}sung, konnten durch eine systematische Auswertung der Signalintensit{\"a}ten von T1- und T2-FS-gewichteten Aufnahmen R{\"u}ckschl{\"u}sse {\"u}ber Ver{\"a}nderungen in der Mikrostruktur gezogen werden, die dar{\"u}ber hinaus in guter {\"U}bereinstimmung mit Ergebnissen von ex vivo µCT-Aufnahmen waren. Dort konnte eine Verdickung der Trabekelstruktur nachgewiesen werden, welche sehr gut mit einer Signalabnahme in den T1-gewichteten Aufnahmen korrelierte. Die radiale Auswertung der Daten erlaubte dabei eine komprimierte Darstellung der Ergebnisse. Dadurch wurde eine effiziente Auswertung der umfangreichen Daten (verschiedene Tiere an mehreren Zeitpunkten mit einer Vielzahl an Einzelaufnahmen) erm{\"o}glicht und eine unabh{\"a}ngige Bewertung erreicht. Um die Limitationen der begrenzten Aufl{\"o}sung von 2D-Multi-Schichtaufnahmen aufzuheben, wurden neue Ans{\"a}tze f{\"u}r eine hochaufgel{\"o}ste 3D-Aufnahme entwickelt. Hierf{\"u}r wurden Spin-Echo-basierte Sequenzen gew{\"a}hlt, da diese eine genauere Abbildung der Knochenmikrostruktur erlauben als Gradienten-Echo-basierte Methoden. Zum einen wurde eine eigene 3D-FLASE-Sequenz entwickelt und zum anderen eine modifizierte 3D-TSE-Sequenz. Damit an Patienten Aufnahmen bei klinischer Feldst{\"a}rke von 1,5 T mit einer hohen r{\"a}umlichen Aufl{\"o}sung innerhalb einer vertretbaren Zeit erzielt werden k{\"o}nnen, muss eine schnelle und signalstarke Sequenz verwendet werden. Eine theoretische Betrachtung bescheinigte der TSE-Sequenz eine um 25 \% h{\"o}here Signaleffizienz verglichen mit einer FLASE-Sequenz mit identischer Messzeit. Dieser Unterschied konnte auch im Experiment nachgewiesen werden. Ein in vivo Vergleich der beiden Sequenzen am Schienbein zeigte eine vergleichbare Darstellung der Spongiosa mit einer Aufl{\"o}sung von 160 × 160 × 400 µm. F{\"u}r die Bildgebung des H{\"u}ftkopfs mit der neuen Sequenz waren jedoch aufgrund der unterschiedlichen Anatomie weitere Modifikationen notwendig. Um l{\"a}ngere Messzeiten durch ein unn{\"o}tig großes Field-of-View zu vermeiden, mussten Einfaltungsartefakte unterdr{\"u}ckt werden. Dies wurde durch die orthogonale Anwendung der Anregungs- und Refokussierungspulse in der TSE-Sequenz effizient gel{\"o}st. Technisch bedingt konnte jedoch nicht eine vergleichbare Aufl{\"o}sung wie am Schienbein realisiert werden. Der Vorteil der 3D-Bildgebung, dass Schichtdicken von deutlich weniger als 1 mm erreicht werden k{\"o}nnen, konnte jedoch erfolgreich auf den Unterkiefer {\"u}bertragen werden. Der dort verlaufende Nervus Mandibularis ist dabei eine wichtige Struktur, deren Verlauf im Vorfeld von verschiedenen operativen Eingriffen bekannt sein muss. Er ist durch eine d{\"u}nne kn{\"o}cherne Wand vom umgebenden Gewebe getrennt. Im Vergleich mit einer 3D-VIBE-Sequenz zeigte die entwickelte 3D-TSE-Sequenz mit integrierter Unterdr{\"u}ckung von Einfaltungsartefakten eine {\"a}hnlich gute Lokalisierung des Nervenkanals {\"u}ber die gesamte L{\"a}nge der Struktur. Dies konnte in einer Studie an gesunden Probanden mit verschiedenen Beobachtern nachgewiesen werden. Durch die neue Aufnahmetechnik konnte dar{\"u}ber hinaus die Aufl{\"o}sung im Vergleich zu bisherigen Studien deutlich erh{\"o}ht werden, was insgesamt eine pr{\"a}zisere Lokalisierung des Nervenkanals erlaubt. Ein Baustein des Tissue Engineerings sind bio-resorbierbare Materialien, deren Abbau- und Einwachsverhalten noch untersucht werden muss, bevor diese f{\"u}r die klinische Anwendung zugelassen werden. Die durchgef{\"u}hrten in vitro µMR-Untersuchungen an Polymerscaffolds zeigten die reproduzierbare Quantifizierung der Porengr{\"o}ße und Wandst{\"a}rke. Dar{\"u}ber hinaus wurde eine inhomogene Verteilung der Strukturparameter beobachtet. Die Ergebnisse waren in guter {\"U}bereinstimmung mit µCT-Aufnahmen als Goldstandard. Unterschiedliche Varianten der Scaffolds konnten identifiziert werden. Dabei bewies sich die MR-Bildgebung als zuverl{\"a}ssige Alternative. Insgesamt zeigen die Ergebnisse dieser Arbeit, welche Vorteile und Anwendungsm{\"o}glichkeiten die 3D-MRT-Bildgebung bietet, und dass auch mit klinischer Feldst{\"a}rke in vivo Voxelgr{\"o}ßen im Submillimeterbereich f{\"u}r alle Raumrichtungen erreichbar sind. Die erzielten Verbesserungen in der r{\"a}umlichen Aufl{\"o}sung erh{\"o}hen die Genauigkeit der verschiedenen Anwendungen und erm{\"o}glichen eine bessere Identifikation von kleinen Abweichungen, was eine fr{\"u}here und zuverl{\"a}ssigere Diagnose f{\"u}r Patienten verspricht.}, subject = {Kernspintomografie}, language = {de} }