@phdthesis{Weissenseel2022, author = {Weißenseel, Sebastian G{\"u}nter}, title = {Spin-Spin Interactions and their Impact on Organic Light-Emitting Devices}, doi = {10.25972/OPUS-25745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257458}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This work investigates the correlations between spin states and the light emission properties of organic light-emitting diodes (OLEDs), which are based on the principle of thermally activated delayed fluorescence. The spin-spin interactions responsible for this mechanism are investigated in this work using methods based on spin-sensitive electron paramagnetic resonance (EPR). In particular, this method has been applied to electrically driven OLEDs. The magnetic resonance has been detected by electroluminescence, giving this method its name: electroluminescence detected magnetic resonance (ELDMR). Initial investigations on a novel deep blue TADF emitter were performed. Furthermore, the ELDMR method was used in this work to directly detect the spin states in the OLED. These measurements were further underlined by time-resolved experiments such as transient electro- and photoluminescence.}, subject = {Elektronenspinresonanz}, language = {en} } @phdthesis{Stahlhut2023, author = {Stahlhut, Philipp}, title = {Konzeption und Aufbau einer Nanofokus Labor CT Anlage in Reflexionsgeometrie auf Basis eines Rasterelektronenmikroskops}, doi = {10.25972/OPUS-30264}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302648}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {In der vorliegenden Arbeit werden die Konzeption und Realisierung eines Computertomographen zur Materialanalyse auf Basis eines Rasterelektronenmikroskops mit einem r{\"a}umlichen Aufl{\"o}sungsverm{\"o}gen im Nanometerbereich diskutiert. Durch einen fokussierten Elektronenstrahl, der mit einer Beschleunigungsspannung von 30 kV auf eine mikrostrukturierte Wolframnadel mit einem Spitzenradius von bis zu 50 nm gezielt wird, entsteht ein kleiner R{\"o}ntgenbrennfleck {\"u}ber den mit geometrischer Vergr{\"o}ßerung hochaufl{\"o}sende Projektionen eines zu untersuchenden Objekts erzeugt werden. Durch Rotation des Testobjekts werden Projektionen aus verschiedenen Blickwinkeln aufgenommen und {\"u}ber einen speziellen Rekonstruktionsalgorithmus zu einem 3-dimensionalen Bild zusammengef{\"u}gt. Bei der Beurteilung der Einzelkomponenten des Ger{\"a}ts wird insbesondere auf Struktur, Form und den elektrochemischen Herstellungsprozess der R{\"o}ntgenquelle eingegangen. Eine ausreichend genaue Positionierung von Messobjekt und R{\"o}ntgenbrennfleck wird {\"u}ber Piezoachsen realisiert, w{\"a}hrend die Stabilit{\"a}t des R{\"o}ntgenbrennflecks {\"u}ber die Elektronenoptik des Rasterelektronenmikroskops und die Form der Quellnadel optimiert wird. Das r{\"a}umliche Aufl{\"o}sungsverm{\"o}gen wird {\"u}ber die Linienspreizfunktion an Materialkanten abgesch{\"a}tzt. F{\"u}r eine Wolfram-Block-Quelle ergibt sich dabei ein Aufl{\"o}sungsverm{\"o}gen von 325 nm - 400 nm in 3D, w{\"a}hrend der Quellfleck einer Wolframnadel das Aufl{\"o}sungsverm{\"o}gen der Anlage auf 65 nm - 90 nm in 2D und 170 nm - 300 nm in 3D bei Messungen an einem AlCu29-Testobjekt anhebt. Außerdem werden die Auswirkungen der Phasenkontrastcharakteristik der R{\"o}ntgenquelle auf die rekonstruierten Bilder nach Anwendung eines Paganin-Filters diskutiert. Dabei zeigt sich, dass durch Anwendung des Filters ein verbessertes Signal-zu-Rausch-Verh{\"a}ltnis auf Kosten der r{\"a}umlichen Bildaufl{\"o}sung erzielt werden kann. Eine Vergleichsmessung mit einem kommerziell verf{\"u}gbaren R{\"o}ntgenmikroskop zeigt die St{\"a}rken des vorgestellten Systems bei Untersuchung von stark absorbierenden Messobjekten. Das kompakte Design erlaubt eine Weiterentwicklung in Richtung eines nanoCT-Moduls als Upgrade Option f{\"u}r Rasterelektronenmikroskope im Gegensatz zu den weitaus teureren bisher verbreiteten nanoCT-Ger{\"a}ten.}, subject = {Computertomographie}, language = {de} } @phdthesis{Lutter2023, author = {Lutter, Fabian}, title = {Elementsensitive Bildgebung - Einsatz chromatischer Pixelarrays in R{\"o}ntgen nano-CT}, doi = {10.25972/OPUS-31995}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319955}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Diese Arbeit befasst sich mit der Weiterentwicklung und Charakterisierung des XRM-II nanoCT Systems, sowie dessen M{\"o}glichkeiten zur Materialtrennung und Elementbestimmung in der nano-Computertomographie. Beim XRM-II nanoCT System handelt es sich um ein R{\"o}ntgenmikroskop, welches in ein Rasterelektronenmikroskop integriert ist, und auf dem Prinzip der geometrischen Vergr{\"o}ßerung basiert. Neben zweidimensionalen Durchstrahlungsbildern ist dieses Mikroskop auch zur dreidimensionalen Bildgebung mittels Computertomographie f{\"a}hig. Der Ausgangspunkt f{\"u}r die Weiterentwicklung ist das XRM-II, mit welchem bereits Computertomographien im Nanometerbereich m{\"o}glich waren. Deren Aufnahmedauer liegt zwischen 14 und 21 Tagen, was das System trotz seiner hohen Aufl{\"o}sung wenig praktikabel macht. Durch eine Anpassung der Blendeneinstellungen am Rasterelektronenmikroskop konnte der Strahlstrom um den Faktor 40 erh{\"o}ht und damit die Aufnahmedauer auf 24 Stunden reduziert werden, wobei weiterhin eine zweidimensionale Aufl{\"o}sung von \(167 \pm 9\) nm erreicht wird. Durch die Trennung von Objekt- und Targetmanipulator lassen sich beide unabh{\"a}ngig und genauer bewegen, wodurch es m{\"o}glich ist selbst 50 nm große Strukturen abzubilden. Die Charakterisierung erfolgt sowohl f{\"u}r das komplette System als auch getrennt in die entscheidenden Komponenten wie Target und Detektor. F{\"u}r das R{\"o}ntgentarget werden Monte-Carlo Simulationen zur Brennfleckgr{\"o}ße, welche entscheidend f{\"u}r die erreichbare Aufl{\"o}sung ist, durchgef{\"u}hrt und mit Aufl{\"o}sungstests verglichen. Der R{\"o}ntgendetektor wird hinsichtlich seiner spektralen Aufl{\"o}sung {\"u}berpr{\"u}ft, welche haupts{\"a}chlich vom Charge Sharing Effekt beeinflusst wird. Die Charakterisierung des Gesamtsystems erfolgt durch den Vergleich mit einer h{\"o}her aufl{\"o}senden Bildgebungsmethode, der FIB Tomographie. Hierbei wird die gleiche Probe, ein Bruchst{\"u}ck einer CPU, mit beiden Methoden unter der Voraussetzung einer {\"a}hnlichen Aufnahmezeit (24 h) untersucht. In der nano-CT kann ein 12 mal gr{\"o}ßeres Volumen analysiert werden, was jedoch eine geringere r{\"a}umliche Aufl{\"o}sung als die FIB Tomographie mit sich bringt. Da die spektrale Aufl{\"o}sung des Detektors aufgrund des Charge Sharing begrenzt ist, lassen sich nur Materialien mit einem großen Unterschied in der Ordnungszahl mittels der Energieschwellen des Detektors trennen. Jedoch kann in Verbindung mit der geeigneten Wahl des Targetmaterials der Absorptionskontrast f{\"u}r leichte Materialien, wie beispielsweise \(SiO_2\) verbessert werden. Dar{\"u}ber hinaus ist es am XRM-II nanoCT m{\"o}glich, durch das integrierte EDX-System, Elemente in der Computertomographie zu identifizieren. Dies wird anhand eines Drei-Wegekatalysators und eines NCA-Partikel gezeigt.}, subject = {Computertomographie}, language = {de} } @phdthesis{Bunzmann2021, author = {Bunzmann, Nikolai Eberhard}, title = {Excited State Pathways in 3rd Generation Organic Light-Emitting Diodes}, doi = {10.25972/OPUS-22078}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220786}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This work revealed spin states that are involved in the light generation of organic light-emitting diodes (OLEDs) that are based on thermally activated delayed fluorescence (TADF). First, several donor:acceptor-based TADF systems forming exciplex states were investigated. Afterwards, a TADF emitter that shows intramolecular charge transfer states but also forms exciplex states with a proper donor molecule was studied. The primary experimental technique was electron paramagnetic resonance (EPR), in particular the advanced methods electroluminescence detected magnetic resonance (ELDMR), photoluminescence detected magnetic resonance (PLDMR) and electrically detected magnetic resonance (EDMR). Additional information was gathered from time-resolved and continuous wave photoluminescence measurements.}, subject = {Elektronenspinresonanz}, language = {en} }