@unpublished{LisinetskayaMitric2019, author = {Lisinetskaya, Polina G. and Mitric, Roland}, title = {Collective Response in DNA-Stabilized Silver Cluster Assemblies from First-Principles Simulations}, series = {The Journal of Physical Chemistry Letters}, journal = {The Journal of Physical Chemistry Letters}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198729}, year = {2019}, abstract = {We investigate fluorescence resonant energy transfer and concurrent electron dynamics in a pair of DNA-stabilized silver clusters. For this purpose we introduce a methodology for the simulation of collective optoelectronic properties of coupled molecular aggregates starting from first-principles quantum chemistry, which can be further applied to a broad range of coupled molecular systems to study their electro-optical response. Our simulations reveal the existence of low-energy coupled excitonic states, which enable ultrafast energy transport between subunits, and give insight into the origin of the fluorescence signal in coupled DNA-stabilized silver clusters, which have been recently experimentally detected. Hence, we demonstrate the possibility of constructing ultrasmall energy transmission lines and optical converters based on these hybrid molecular systems.}, language = {en} }