@phdthesis{Steinbauer2012, author = {Steinbauer, Michael Christoph}, title = {Ionen- und Elektronenimaging reaktiver Molek{\"u}le: Ethyl, Propargylen und Fulvenallenyl}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75649}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Bei Verbrennungsprozessen im Otto-Motor, beim Raffinationsprozess in Erd{\"o}lraffinerien, im interstellaren Raum oder in der Chemie der Erdatmosph{\"a}re spielen Molek{\"u}le, wie sie in dieser Arbeit untersucht wurden, eine wichtige Rolle. Allerdings stellt es eine große Herausforderung dar, solch reaktive Substanzen zu erzeugen und zu handhaben. Um das Ethyl-Radikal, ein wichtiges Intermediat z.B. in der Erzeugung von Ethylen, zu untersuchen, wurde eine bestehende Apparatur modifiziert. Diese erm{\"o}glicht es, die Geschwindigkeitsverteilung der Fragmente (Ionen oder Elektronen) zweidimensional aufzuzeichnen, die nach der Anregung mittels Laserlicht durch Photodissoziation entstehen. Diese velocity-map imaging Apparatur wurde in einem ersten Schritt mittels der Photodissoziation von Pyrrol bei 240 nm kalibriert. Cycloheptatrien konnte erfolgreich auf seine Photodissoziation untersucht werden, was als Test des VMI-Experiment genutzt wurde. Die gewonnenen Ergebnisse stimmten mit Resultaten {\"u}berein, welche durch Doppler-Fragmentspektroskopie in dieser und fr{\"u}heren Arbeiten gewonnen wurden. Zwischen 11 und 13 \% der {\"U}berschussenergie gehen dabei in die Translation des H-Atoms. • Das Ethyl-Radikal zeigte, als das erste mit unserer VMI-Apparatur untersuchte Radikal, eine interessante Photodissoziation: Wird es bei 250 nm angeregt, ergeben sich zwei Dissoziationskan{\"a}le, wobei ein bekannter Kanal nach schneller interner Konversion in den Grundzustand Fragmente mit geringer Translationsenergie erzeugt. Der zweite Kanal zeigt anisotropes Verhalten und erzeugt Wasserstoffatome mit hoher Translationsenergie, die mehr als die H{\"a}lfte der {\"U}berschussenergie abf{\"u}hren. Die Erkl{\"a}rung dieses Prozesses erweist sich schwierig in Anbetracht von durchgef{\"u}hrten Isotopenmarkierungsexperimenten sowie der beobachteten Ratenkonstanten f{\"u}r die Photodissoziation. Eine Interaktion von Valenz- und Rydbergzust{\"a}nden im Ethyl-Radikal k{\"o}nnte eine Erkl{\"a}rung darstellen. In Zukunft kann beim VMI-Experiment in W{\"u}rzburg versucht werden, die Aufl{\"o}sung weiter zu verbessern. Dabei erg{\"a}ben sich im Idealfall zwei scharfe Ringe der H-Atome durch die Spin-Bahn-Aufspaltung von Brom, welche eine sehr genaue Kalibrierung erm{\"o}glichen. Neben den Ergebnissen auf dem Gebiet der Photodissoziation, die mit der VMI-Apparatur erzielt wurden, konnten mittels Synchrotronstrahlung und Aufzeichnen der Photoelektronen mittels VMI und der TPEPICO-Technik die folgenden Ergebnisse erhalten werden: • Von Propargylen, einem von drei C3H2 Isomeren, konnte die adiabatische Ionisierungsenergie (IEad) mit 8.99 eV bestimmt werden. Der Vorl{\"a}ufer Diazopropin, eine sehr instabile Substanz, wurde dazu synthetisiert und mit Synchrotronlicht untersucht. Allerdings war es nicht m{\"o}glich, die Schwingungen im Kation oder die dissoziative Photoionisation (DPI) des Carbens zu untersuchen, da Diazopropin seinerseits bereits bei Energien von 9 eV durch DPI zerf{\"a}llt. Allerdings konnte ein Peak im TPES des zyklischen Isomers aus einer fr{\"u}heren Messung eindeutig dem Propargylen zugeordnet werden. Ein Ausweg die DPI zu umgehen stellt die Verwendung eines anderen Vorl{\"a}ufers dar. Beispielsweise wurde dazu Propargylchlorid getestet, welches aber nicht das Propargylen erzeugt, sondern das zyklische Isomer Cyclopropenyliden. Daneben k{\"o}nnen durch ein Doppel-Imaging Experiment, bei dem die Ionen genauso wie die Elektronen mit einem bildgebenden Detektor aufgezeichnet werden, Ionen mit kinetischer Energie aus DPI von Ionen aus der Ionisation ohne kinetischer Energie unterschieden werden. • Von den substituierten Methyl-Radikalen Brommethyl sowie Cyanomethyl konnte die IEad (8.62 bzw. 10.28 eV) und vom Brommethyl die DPI (AE0K = 13.95 eV) bestimmt werden. Daraus konnte der Einfluss der Substituenten auf die IEad im Vergleich zum Methyl-Radikal (IE = 9.84 eV) gezeigt werden. Das zeigt, dass der Brom-Substituent das Kation, der Cyano-Rest dagegen das Radikal stabilisiert. Ebenso konnten aus den Ergebnissen beim Brommethyl thermodynamische Daten wie die Standardbildungsenthalpie des Radikals (ΔH0f= 174.5 kJ/mol) oder Bindungsenergien gewonnen werden. Letztere betragen 334 kJ/mol f{\"u}r die C-Br Bindung im Brommethyl-Radikal sowie 505 kJ/mol im Kation. • Das Fulvenallen (C7H6) wurde aus Phthalid durch Pyrolyse erzeugt und dessen IEad mit 8.22 eV bestimmt. Schwingungen konnten im Kation aufgel{\"o}st und zugeordnet werden. Außerdem konnte erstmals die IEad des Fulvenallenyl-Radikals (C7H5) mit 8.19 eV festgelegt werden. Im Vergleich zu fr{\"u}heren Messungen zeigte sich, dass aus Toluol in der Pyrolyse ebenfalls die beiden C7H5/C7H6 Isomere entstehen. Um verschiedene C7H5/C7H6 Isomere in einem Verbrennungsprozess zu unterscheiden, w{\"a}re es vorteilhaft, experimentell bestimmte Ionisierungsenergien von anderen Isomeren zu kennen.}, subject = {Radikal }, language = {de} } @phdthesis{Gerbich2015, author = {Gerbich, Thiemo M. P.}, title = {Pikosekunden-zeitaufgel{\"o}ste Deaktivierungsprozesse in isolierten Molek{\"u}len - Fluorenon, NDCA, Me-NI und NTCDA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118654}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Im Rahmen der vorliegenden Dissertation wurden die Dynamiken von strahlungslosen Deaktivierungsprozessen von vier verschiedenen Molek{\"u}len im elektronisch angeregten Zustand untersucht. Ein fundiertes Verst{\"a}ndnis der intramolekularen Energieumverteilung in isolierten pi-konjugierten Systemen ist neben dem Modellcharakter auch f{\"u}r Anwendungen in der organischen Elektronik von Interesse. Die Untersuchungen dienen zudem als optimaler Maßstab f{\"u}r theoretische Simulationen, die auf eine Nachbildung der molekularen Dynamik ausgerichtet sind. Die Inbetriebnahme des Pikosekunden-Lasersystems stellt in der Arbeitsgruppe ein großes Potential f{\"u}r die Untersuchung der Dynamik von isolierten pi-konjugierten Molek{\"u}len zur Verf{\"u}gung. Erste Experimente konnten an unterschiedlichen Heterocyclen mit interessantem zeitlichen Verhalten erfolgreich durchgef{\"u}hrt werden und lieferten bereits wichtige Erkenntnisse {\"u}ber die strahlungslose Deaktivierung auf der ps-Zeitskala. Selbst f{\"u}r große Molek{\"u}le mit geringem Dampfdruck, die nur mit hohem experimentellen Aufwand im isolierten Zustand charakterisierbar sind, konnten Relaxationszeiten der angeregten Zust{\"a}nde ermittelt werden. Der Fokus der einzelnen Studien lag in der Erforschung der isolierten Molek{\"u}le, welche durch Anwendung der Molekularstrahl-Technik mit zeitaufgel{\"o}ster REMPI-Spektroskopie anhand des ps-Systems untersucht werden sollten. Zur Kontrolle der experimentellen Ergebnisse wurden zudem Vergleichsmessungen der transienten Absorptionsspektroskopie (TA) in der Fl{\"u}ssigphase herangezogen, wodurch eine fundierte Interpretation der Dynamik m{\"o}glich wurde. Zu den wichtigen Zielen geh{\"o}rten jedoch die Vergleiche der experimentellen Ergebnisse von isolierten Molek{\"u}len mit Berechnungen der Zustandsenergien sowie Simulationen der Molek{\"u}ldynamik aus dem Theorie-Arbeitskreis von Prof. Mitric. Auf diese Weise konnten wichtige Erkenntnisse {\"u}ber die Dynamik der Deaktivierungsprozesse gewonnen werden. Die Kombination der Gasphasen-Experimente mit TA-Messungen in der Fl{\"u}ssigphase hat sich als besonders n{\"u}tzlich erwiesen, um bei mehrstufigen Deaktivierungsprozessen einen erweiterten Einblick in die Dynamik der Molek{\"u}le zu erhalten. - So konnte bei Fluorenon in Cyclohexan und Acetonitril durch Vergleich der Anregungen des S3- und S1-Zustands eine zus{\"a}tzliche Zeitkonstante von 8-16 ps beobachtet werden, welche die innere Umwandlung zum S1-Zustand dokumentiert und die Ergebnisse der Gasphasen-Messungen best{\"a}tigt. - Durch Verwendung von L{\"o}sungsmitteln unterschiedlicher Polarit{\"a}t und der damit verbundenen Verschiebung der elektronischen Zust{\"a}nde von Fluorenon konnte zudem der zweite Deaktivierungsprozess eindeutig einem ISC-Prozess mit Zeitkonstanten von 120-154 ps zugeordnet werden. In der Gasphase wurde dieser Prozess lediglich als langlebiger Offset wahrgenommen. - Unterschiedliche Anregungsenergien zeigten bei TA-Messungen von NDCA eine nahezu identische Molek{\"u}ldynamik mit ca. 200 ps, w{\"a}hrend f{\"u}r isoliertes NDCA ein starker Abfall der Lebensdauer mit zunehmender Schwingungsenergie beobachtet wurde. In der Gasphase wird somit von einer Deaktivierung {\"u}ber eine Energiebarriere ausgegangen, w{\"a}hrend in L{\"o}sung eine zu schnelle Abk{\"u}hlung durch Schwingungsrelaxation diesen Prozess verhindert. - Bei NTCDA konnten in den TA-Messungen nach Anregung des S1-Zustands eine Relaxation in die Triplett-Umgebung innerhalb von wenigen Pikosekunden beobachtet werden, was im Einklang mit der sehr schnellen Deaktivierung in der Gasphase betrachtet werden kann. Eine ausf{\"u}hrliche Vergleichsstudie von isolierten Molek{\"u}len mit computergest{\"u}tzten Rechnungen und Simulationen wurde f{\"u}r die Molek{\"u}le NDCA und Me-NI durchgef{\"u}hrt. Dabei wurde explizit auf den Einfluss von Spin-Bahn-Kopplungen und konischen Durchschneidungen eingegangen, welche zu konkurrierenden Deaktivierungsprozessen des S1-Zustands f{\"u}hren k{\"o}nnen. - Durch Simulationen der Surface-Hopping-Dynamik wurde deutlich, dass bei NDCA und Me-NI im ersten angeregten Zustand eine konische Durchschneidung (CI) zwischen dem S1- und S0-Zustand erreicht werden kann. - W{\"a}hrend die Dynamik von NDCA bei h{\"o}herer Schwingungsanregung stark durch die CI dominiert wird, spielt die direkte Relaxation in den elektronischen Grundzustand bei Me-NI offenbar keine Rolle. - In Abwesenheit der CI zeigen NDCA und Me-NI in einer mit Spin-Bahn-Kopplung erweiterten Simulation der Populationsdynamik einen signifikanten Populationstransfer in die Triplett-Umgebung (T1-T4). Eine innere Umwandlung in den Grundzustand konnte jedoch nur bei Erreichen der CI beobachtet werden. Eine weitere Verbesserung der ps-Experimente kann durch Aufbau eines Photoelektronen-Spektrometers erreicht werden, da durch diese Technik eine pr{\"a}zisere Aussage dar{\"u}ber getroffen werden kann, aus welchem elektronischen Zustand die Molek{\"u}le ionisiert wurden. Eine Unterscheidung von ISC- und IC-Prozessen k{\"o}nnte somit gew{\"a}hrleistet werden.}, subject = {REMPI}, language = {de} }