@phdthesis{Hesen2024, author = {Hesen, Nienke Aiyuan}, title = {The importance of antibody isotype and idiotype in FcγR-dependent agonism induced by anti-CD40 antibodies}, doi = {10.25972/OPUS-37187}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-371872}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The TRAF-binding receptor CD40 belongs to the TNFR superfamily and is broadly expressed on healthy cells, mainly on antigen-presenting cells, but also on other immune cells and non-immune cells. CD40 is bound by its ligand CD40L, which is essential for a wide range of immunological responses by inducing or inhibiting different pathways that are essential for a variety of cellular processes, including immune activation and maturation. (1,2) Dysregulated CD40 signalling has been implicated in inflammatory diseases, such as hyper-IgM syndrome, psoriasis, and cancer. (3-6) Due to its broad expression across various tumour types, it can serve as a tumour-associated antigen and has therefore been proposed as a target for antibodies for cancer treatment. (2,7,8) Agonistic anti-CD40 antibodies have been demonstrated to induce anti-tumoural immune responses as well as therapeutic immunity. (2) Furthermore, prolonged stimulation of CD40 in tumour cells in vitro has been shown to decrease proliferation, increase expression of cytotoxic TNFSFLs and induce apoptosis. (9,10) Their effect on anti-tumoral responses has been well studied and anti-tumoral responses by DC maturation and suppression of malignant growth of B-cells have been confirmed and were found to induce cell death in tumours in vitro. (11-14) Many agonistic anti-CD40 antibodies specifically have been reported to require secondary crosslinking by binding to either activating or inhibitory FcγRs to be agonistic in vitro, while in vivo studies have indicated inhibitory FcƴR2B expression as critical factor. (15-17) However, FcƴR independent agonism has also been reported for anti-CD40 antibodies. (18,19) While agonistic anti-CD40 IgG1, IgG3 and IgG4 antibodies have been shown to display FcƴR dependent agonism, agonistic anti-CD40 IgG2 antibodies have shown to display FcƴR independent agonism. Conversion of anti-CD40 IgG1 antibodies into IgG2 has also been shown to convert the antibody's agonism into FcƴR independent agonism. (20) To overcome FcƴR dependency, bispecific antibody fusion proteins containing a scFv as anchoring domain allowing for crosslink independent of FcƴR binding have been designed before. This approach has been found to display strong agonism for other antibody fusion proteins when bound to both targets, with response levels resembling that of FcƴR bound antibodies. (21,22) The relevance of antibody isotype and idiotype for FcƴR-dependent agonism as well as the relevance of valency and antibody oligomerization for FcƴR-independent agonism were investigated in this study on a panel of different anti-CD40 antibodies. Several clinically investigated anti-CD40 antibodies (ADC-1013(23), APX005M(24), ChiLob7.4(25) and CP-870,893(26)) and one preclinical antibody (G28.5(27,28)) were considered. Selected antibodies were then cloned onto an IgG1, IgG1(N297A), IgG2 and IgG4 backbone. The IgG1(N297A) isotype is an IgG1 antibody with a point mutation (N297A) that is known to strongly reduce binding to FcƴR1, while reducing the binding affinity to FcƴR2B to undetectable levels. (29,30) In this work it is demonstrated that the investigated anti-CD40 antibody variants across different isotypes activate both the classical and alternative NFκB pathway by stimulating U2OS cells in an FcƴR dependent manner. Stimulation in the presence of both human FcƴRs as well as murine FcƴRs resulted in CD40 stimulation. A difference in binding competition was observed for the various anti-CD40 IgG1 antibodies, but no indication of a CRD-dependent mechanism responsible for their agonistic activity was found. Moreover, this FcƴR dependency could be overcome by creation of tetravalent antibody fusion proteins.}, subject = {Antigen CD40}, language = {en} } @phdthesis{ElMesery2014, author = {El-Mesery, Mohamed}, title = {Development of CD40-targeted bifunctional scFv-TRAIL fusion proteins that induce TRAILR1- and TRAILR2-specifc cell death and dendritic cells activation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-100114}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {TRAIL is a member of TNF superfamily and mediates apoptosis by binding to two DRs, TRAILR1 and TRAILR2. Despite the fact that there are other TRAILRs, TRAILR1 and TRAILR2 receive the major research interest due to their ability to trigger apoptosis and their possible use as targets in tumor therapy. Due to the potential advantages of TRAILR1- or TRAILR2-specific targeting, we investigated recently published TRAIL DR-specific mutants, one conferring specificity for TRAILR1 (TRAILmutR1) and one for TRAILR2 (TRAILmutR2). It was well proved in this work that TRAILmutR1 shows specific binding to TRAILR1 and no specific binding to TRAILR2. TRAILmutR2 vice versa shows specific binding to TRAILR2 and no significant binding to TRAILR1. Moreover, these mutants were able to induce caspase activation and cell death in a TRAILR1/2-specific manner. Moreover, the enhancement of TRAILR2-induced apoptosis by secondary oligomerization of soluble wild-type TRAIL was confirmed for the TRAILR2-specifc TRAIL mutant and similar findings were made with the TRAILR1-specific TRAIL mutant. The soluble form of TRAIL exhibits weak apoptotic activity as compared to transmembrane TRAIL. Therefore, there is the challenge in clinical research to improve the activity of soluble TRAIL. A second strategy besides the above mentioned oligomerization to improve soluble TRAIL activity is anchoring of the molecule to the cell surface, e.g. through the genetic fusion with a scFv domain recognizing a cell surface antigen. In this work, we generated fusion proteins of TRAIL, TRAILmutR1 and TRAILmutR2 with a scFv recognizing CD40 (scFv:G28). Initially, we analyzed the functionality of both the TRAIL domain and the scFv:G28 domain of the corresponding fusion proteins. TRAIL functionality was well proved through its ability to induce cell death in TRAIL sensitive cells such as Jurkat cells, provided that scFv:G28-TRAIL fusion proteins were oligomerized by anti-Flag mAb M2. Concerning the scFv:G28 domain, the fusion proteins showed enhanced binding affinity to cell lines expressing CD40 as compared to their parental CD40-negative cells. Consistent with previous studies investigating TRAIL fusion proteins with other cell surface antigen-targeting scFvs, the scFv:G28 fusion proteins with TRAIL, TRAILmutR1 and TRAILmutR2 showed enhanced induction of cell death in a CD40-dependent manner. Moreover, our results revealed that these fusion proteins have a significant paracrine apoptotic effect on CD40-negative bystander cells upon anchoring to CD40-positive cells which are TRAIL resistant. Thus, the current work provides for the first time scFv fusion proteins of TRAIL and TRAILR1- and TRAILR2-specific TRAIL mutants with CD40-restricted activity. These fusion proteins provide the advantage of attenuating the off-target effects and the potential side effects of per se highly active TRAIL variants on one hand due to the CD40-binding dependent enhancement of activity and on the other hand due to the differential use of TRAILR1 and TRAILR2. CD40 represents a tumor associated marker which is expressed on many tumor cells but also on immune cells. Therefore, the last part of this work focused on the analysis of the ability of scFv:G28-TRAIL fusion proteins to induce CD40 signaling both in tumor cells and also in immune cells. It turned out that the scFv:G28-TRAIL fusion proteins are able to induce CD40 signaling in CD40-positive tumor cells but especially also in immune cells such as iDCs leading to their maturation and further activation of immune responses. Taken together, this work provides novel bifunctional scFv-TRAIL fusion proteins which combine the induction of apoptosis via TRAIL DR with stimulation of CD40 signaling which possibly enhances antitumor immunity.}, subject = {Tumor-Nekrose-Faktor}, language = {en} }