@phdthesis{WaagHiersch2017, author = {Waag-Hiersch, Luisa}, title = {„iClick"-Reaktionen von Ru- und Rh-Azid-Komplexen mit elektronenarmen Alkinen: Regioselektivit{\"a}t, Stabilit{\"a}t und Kinetik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146286}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Die regioselektive Funktionalisierung von Bio(makro)molek{\"u}len erfordert Reaktionen, die mit einem biologischen System weder interagieren noch interferieren. Bestimmte funktionelle Gruppen, wie Azide oder Alkine, sind unter physiologischen Bedingungen inert, kommen nicht in der Natur vor, lassen sich selektiv miteinander verkn{\"u}pfen und sind nicht-toxisch gegen{\"u}ber Zellen und Organismen. F{\"u}r die Einf{\"u}hrung metallbasierter Funktionalit{\"a}ten in solche Zielstrukturen stellen Click-Reaktionen daher einen schnellen Zugang dar, wobei Reaktionen, die ohne Zusatz von Katalysator und bei Raumtemperatur ablaufen von besonderem Interesse sind. Das Ziel der vorliegenden Arbeit war es daher die „iClick"-Reaktion von Ruthenium-Azid-Komplexen der allgemeinen Formel [Ru(N3)(aren)(N-N)]+ mit bidentaten Stickstoffliganden sowie Rhodium-Azid-Komplexen der allgemeinen Formel [Rh(Cp*)(N3)(bpyR,R)]+ mit unterschiedlich substituierten 2,2'-Bipyridin-Coliganden (R = OCH3, H, COOCH3) gegen{\"u}ber elektronenarmen Alkinen zu untersuchen. R{\"o}ntgenstrukturanalysen der resultierenden Triazolat-Komplexe sollten den Koordinationsmodus best{\"a}tigten, da die Produkte der Click-Reaktionen prinzipiell als zwei verschiedene Regioisomere auftreten k{\"o}nnen. Die [Rh(Cp*)(N3)(bpyR,R)]CF3SO3-Komplexe mit 2,2'-Bipyridin (bpy), dem elektronenziehenden Ligand 4,4'-Bis(methoxycarbonyl)-2,2′-bipyridin (bpyCOOCH3,COOCH3) sowie dem elektronenschiebenden Ligand 4,4'-Dimethoxy-2,2'-bipyridin (bpyOCH3,OCH3) wurden aus den entsprechenden Rhodium-Chlorido-Komplexen durch F{\"a}llung des Halogenids mit Silbertrifluormethansulfonat und anschließender Umsetzung mit Natriumazid hergestellt. In L{\"o}sung waren diese Verbindungen jedoch nur begrenzt stabil, wobei der Komplex mit bpyOCH3,OCH3 am wenigsten empfindlich war, w{\"a}hrend [Rh(Cp*)(N3)(bpyCOOCH3,COOCH3)]CF3SO3 aufgrund der sehr schnellen Zersetzung nicht isoliert werden konnte. Die „iClick"-Reaktion der Rhodium-Azid-Komplexe mit 4,4,4-Trifluorobut-2-ins{\"a}ureethylester ergab dann aber die stabilen Triazolat-Komplexe [Rh(Cp*)(triazolatCF3,COOEt)(bpyR,R)]CF3SO3 in sehr guter Ausbeute. Die Ruthenium-Azid-Komplexe [Ru(N3)(N-N)(p­cym)]PF6 mit N-N = bpy, bpyCOOCH3,COOCH3, bpyOCH3,OCH3, Bipyrimidin (bpym) sowie Dipyrido[3,2­a:2',3'­c]phenazin (dppz) wurden ausgehend von den jeweiligen Ruthenium-Chlorido-Komplexen durch F{\"a}llung des Halogenid-Liganden mit Silbertrifluormethansulfonat und anschließender Umsetzung mit Natriumazid in guter bis moderater Ausbeute hergestellt. Um den Einfluss des Aren-Liganden zu untersuchen wurde außerdem der entsprechende Hexamethylbenzol-Komplex [Ru(N3)(bpy)(hmb)]CF3SO3 in moderater Ausbeute hergestellt. Alle [Ru(N3)(aren)(N-N)]X-Komplexe mit X = PF6- oder CF3SO3- wurden mittels 1H, 13C NMR- und IR-Spektroskopie, CHN-Analyse sowie ESI-Massenspektrometrie charakterisiert. Die „iClick"-Reaktion dieser Komplexe erfolgte mit 4,4,4-Trifluorobut-2-ins{\"a}ureethylester und teilweise auch mit Dimethylacetylendicaboxylat (DMAD) in sehr guter bis guter Ausbeute. Außerdem konnten f{\"u}r die R{\"o}ntgenstrukturanalyse taugliche Einkristalle von [Ru(triazolatCF3,COOEt)(bpy)(hmb)]CF3SO3 und [Ru(triazolatCF3,COOEt)(bpyCOOCH3,COOCH3)(p­cym)]PF6 erhalten werden, die die N2-Koordination des Triazolat-Liganden an das Zentralatom best{\"a}tigten. Um diese als metallbasierte Marker einsetzen zu k{\"o}nnen, m{\"u}ssen die resultierenden Triazolat-Komplexe bei biologisch relevanten pH-Werten und gegen{\"u}ber Ligandenaustausch, zum Beispiel mit den Aminos{\"a}ureseitenketten von Proteinen, stabil sein. Durch HPLC-Untersuchungen an [Ru(triazolatCF3,COOEt)(bpy)(hmb)]CF3SO3 wurde gezeigt, dass dieser Komplex in w{\"a}ssriger L{\"o}sung {\"u}ber einen pH-Bereich von 1 bis 8 bei Raumtemperatur mindestens 24 h stabil ist. Außerdem konnte eine weitgehende Stabilit{\"a}t gegen{\"u}ber Ligandenaustausch mit den Seitenketten der Aminos{\"a}uren L­Cystein, L-Histidin, L­Methionin und L-Glutamins{\"a}ure bei 37 °C {\"u}ber mindestens 72 h festgestellt werden. Insbesondere die Geschwindigkeit der „iClick"-Reaktion ist in einem biologischen Kontext von Bedeutung, da die Konjugationsreaktionen schneller ablaufen m{\"u}ssen als interessierende biologische Prozesse. Mittels HPLC und IR-Spektroskopie wurde f{\"u}r die „iClick"-Reaktion der Rutheniumazid-Komplexe [Ru(N3)(bpyR,R)(p-cym)]PF6 mit R = OCH3, H oder COOCH3 sowie [Ru(N3)(bpy)(hmb)]CF3SO3 mit einem {\"U}berschuss an 4,4,4-Trifluorobut-2-ins{\"a}ureethylester Geschwindigkeitskonstanten pseudoerster Ordnung im Bereich von 1 ­ 3*10-3 s-1 bestimmt. Außerdem war es mittels IR-Spektroskopie in L{\"o}sung m{\"o}glich die Geschwindigkeits-konstante pseudoerster Ordnung f{\"u}r die „iClick"-Reaktion der Rhodiumazid-Verbindungen [Rh(Cp*)(N3)(bpyR,R)]CF3SO3 mit R = OCH3, H oder COOCH3 und 4,4,4-Trifluorobut-2-ins{\"a}ureethylester zu 2 ­ 4*10-3 s-1 zu ermitteln. Insgesamt zeigte sich, dass Komplexe mit elektronenreichen Coliganden schneller mit 4,4,4-Trifluorobut-2-ins{\"a}ureethylester reagieren als solche mit elektronen{\"a}rmeren Liganden. Auch war die Geschwindigkeitskonstante f{\"u}r die Reaktion der Rhodium-Komplexe h{\"o}her als f{\"u}r die Rutheniumverbindungen. Die Geschwindigkeitskonstanten zweiter Ordnung wurden aus der 19F NMR-spektroskopischen Untersuchung der Reaktion von 4,4,4-Trifluorobut-2-ins{\"a}ureethylester und [Ru(N3)(bpyR,R) (p-cym)]PF6 mit R = OCH3, H oder COOCH3 sowie [Ru(N3)(bpy)(hmb)]CF3SO3 bei 20 °C bestimmt. Bei ann{\"a}hernd gleichem Verh{\"a}ltnis von Alkin und Rutheniumazid-Komplexen wurden Geschwindigkeitskonstanten im Bereich von 1 - 2*10-2 L mol-1 s-1 erhalten. Diese sind gr{\"o}ßer als die der Staudinger-Ligation, aber kleiner als die der spannungsinduzierten Azid-Alkin Cycloaddition. Prinzipiell sollte damit also eine biologische Anwendung m{\"o}glich sein. Außerdem wurde die Aktivierungsenergie der Reaktion von [Ru(N3)(bpy)(p­cym)]PF6 mit 4,4,4-Trifluorobut-2-ins{\"a}ureethylester aus der Untersuchung der Temperaturabh{\"a}ngigkeit im Bereich von -20 °C bis +20 °C mit VT-NMR zu 46.1 kJ mol-1 bestimmt. In den 19F NMR-Spektren des Reaktionsgemisches zeigte sich bei -20 °C neben dem Signal des N2-koordinierten Triazolats außerdem ein weiteres, das dem N1-Isomer zuzuordnen ist, welches bei Erw{\"a}rmen jedoch wieder verschwand. In einer DFT-Rechnung wurde die Geometrie von [Ru(N3)(bpy)(hmb)]CF3SO3 optimiert. Dabei zeigte sich, dass nur etwa 25 - 30\% aller Trajektorien angreifender Alkinmolek{\"u}len einen Zugang zum Azid erm{\"o}glichen, sodass die Reaktionsgeschwindigkeit um etwa einen Faktor vier niedriger liegen sollte als f{\"u}r nicht oder nur wenig abgeschirmte Organoazid-Verbindungen. Die „iClick"-Reaktion der hier untersuchten Metall-Azid-Komplexe mit elektronenarmen Alkinen zeigt also bereits jetzt Reaktionsgeschwindigkeiten vergleichbar etablierter Biokonjugationsreaktionen. In Zukunft sollte daher das Potential anderer Metall-Azid-Bausteine untersucht und auch das Alkin variiert werden.}, subject = {Ruthenium}, language = {de} } @phdthesis{Tian2021, author = {Tian, Yaming}, title = {Selective C-X and C-H Borylation by N-Heterocyclic Carbene Nickel(0) Complex}, doi = {10.25972/OPUS-21300}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213004}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Organoboron compounds are important building blocks in organic synthesis, materials science, and drug discovery. The development of practical and convenient ways to synthesize boronate esters attracted significant interest. Photoinduced borylations originated with stoichiometric reactions of arenes and alkanes with well-defined metal-boryl complexes. Now photoredox-initiated borylations, catalyzed either by transition-metal or organic photocatalysts, and photochemical borylations with high efficiency have become a burgeoning area of research. In this chapter, we summarize research in the field of photocatalytic C-X borylation, especially emphasizing recent developments and trends, based on transition-metal catalysis, metal-free organocatalysis and direct photochemical activation. We focus on reaction mechanisms involving single electron transfer (SET), triplet energy transfer (TET), and other radical processes. We developed a highly selective photocatalytic C-F borylation method that employs a rhodium biphenyl complex as a triplet sensitizer and the nickel catalyst [Ni(IMes)2] (IMes = 1,3-dimesitylimidazolin-2-ylidene) for the C-F bond activation and defluoroborylation process. This tandem catalyst system operates with visible (400 nm) light and achieves borylation of a wide range of fluoroarenes with B2pin2 at room temperature in excellent yields and with high selectivity. Direct irradiation of the intermediary C-F bond oxidative addition product trans-[NiF(ArF)(IMes)2] leads to fast decomposition when B2pin2 is present. This destructive pathway can be bypassed by indirect excitation of the triplet states of the nickel(II) complex via the photoexcited rhodium biphenyl complex. Mechanistic studies suggest that the exceptionally long-lived triplet excited state of the Rh biphenyl complex used as the photosensitizer allows for efficient triplet energy transfer to trans-[NiF(ArF)(IMes)2], which leads to dissociation of one of the NHC ligands. This contrasts with the majority of current photocatalytic transformations, which employ transition metals as excited state single electron transfer agents. We have previously reported that C(arene)-F bond activation with [Ni(IMes)2] is facile at room temperature, but that the transmetalation step with B2pin2 is associated with a high energy barrier. Thus, this triplet energy transfer ultimately leads to a greatly enhanced rate constant for the transmetalation step and thus for the whole borylation process. While addition of a fluoride source such as CsF enhances the yield, it is not absolutely required. We attribute this yield-enhancing effect to (i) formation of an anionic adduct of B2pin2, i.e. FB2pin2-, as an efficient, much more nucleophilic {Bpin-} transfer reagent for the borylation/transmetalation process, and/or (ii) trapping of the Lewis acidic side product FBpin by formation of [F2Bpin]- to avoid the formation of a significant amount of NHC-FBpin and consequently of decomposition of {Ni(NHC)2} species in the reaction mixture. We reported a highly selective and general photo-induced C-Cl borylation protocol that employs [Ni(IMes)2] (IMes = 1,3-dimesitylimidazoline-2-ylidene) for the radical borylation of chloroarenes. This photo-induced system operates with visible light (400 nm) and achieves borylation of a wide range of chloroarenes with B2pin2 at room temperature in excellent yields and with high selectivity, thereby demonstrating its broad utility and functional group tolerance. Mechanistic investigations suggest that the borylation reactions proceed via a radical process. EPR studies demonstrate that [Ni(IMes)2] undergoes very fast chlorine atom abstraction from aryl chlorides to give [NiI(IMes)2Cl] and aryl radicals. Control experiments indicate that light promotes the reaction of [NiI(IMes)2Cl] with aryl chlorides generating additional aryl radicals and [NiII(IMes)2Cl2]. The aryl radicals react with an anionic sp2-sp3 diborane [B2pin2(OMe)]- formed from B2pin2 and KOMe to yield the corresponding borylation product and the [Bpin(OMe)]•- radical anion, which reduces [NiII(IMes)2Cl2] under irradiation to regenerate [NiI(IMes)2Cl] and [Ni(IMes)2] for the next catalytic cycle. A highly efficient and general protocol for traceless, directed C3-selective C-H borylation of indoles with [Ni(IMes)2] as the catalyst was achieved. Activation and borylation of N-H bonds by [Ni(IMes)2] is essential to install a Bpin moiety at the N-position as a traceless directing group, which enables the C3-selective borylation of C-H bonds. The N-Bpin group which is formed is easily converted in situ back to an N-H group by the oxidiative addition product of [Ni(IMes)2] and in situ-generated HBpin. The catalytic reactions are operationally simple, allowing borylation of of a variety of substituted indoles with B2pin2 in excellent yields and with high selectivity. The C-H borylation can be followed by Suzuki-Miyaura cross-coupling of the C-borylated indoles in an overall two-step, one-pot process providing an efficient method for synthesizing C3-functionalized heteroarenes.}, subject = {Borylierung}, language = {en} } @phdthesis{Sieck2018, author = {Sieck, Carolin}, title = {Synthesis and Photophysical Properties of Luminescent Rhodacyclopentadienes and Rhodium 2,2'-Biphenyl Complexes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154844}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The photochemistry and photophysics of transition metal complexes are of great interest, since such materials can be exploited for a wide range of applications such as in photocatalysis, sensing and imaging, multiphoton-absorption materials and the fabrication of OLEDs. A full understanding of the excited state behavior of transition metal compounds is therefore important for the design of new materials for the applications mentioned above. In principle, the luminescence properties of this class of compounds can be tuned by changing the metal or subtle changes in the ligand environment. Furthermore, transition-metal complexes continue to play a major role in modern synthetic chemistry. In particular, they can realize selective transformations that would either be difficult or impossible by conventional organic chemistry. For example, they enable the efficient and selective formation of carbon-carbon bonds. One famous example of these types of transformations are metal-catalyzed cyclization reactions. Herein, metallacyclopentadiene complexes are considered as key intermediates in a number of metal-mediated or -catalyzed cyclization reactions, i.e. the [2+2+2] cyclotrimerization of alkynes. Recent research has focused on the synthesis and characterization of these metallacyclic intermediates such as MC4 ring systems. Metallacyclopentadienes are structurally related to main group EC4 systems such as boroles, siloles, thiophenes and phospholes. Overall, this group of compounds (EC4 analogues) is well known and has attracted significant attention due to their electron-transport and optical properties. Unlike transition metal analogues, however, these EC4 systems show no phosphorescence, which is due to inefficient SOC compared to 2nd and 3rd row transition metals, which promoted us to explore the phosphorescence potential of metallacyclopentadienes. In 2001, Marder et al. developed a one-pot high-yield synthesis of luminescent 2,5 bis(arylethynyl)rhodacyclopentadienes by reductive coupling of 1,4-diarylbuta-1,3-diynes at a suitable rhodium(I) precursor. Over the past years, a variety of ligands (e.g. TMSA, S,S' diethyldithiocarbamate, etc.) and 1,4-bis(p-R-phenyl)-1,3-butadiynes or linked , bis(p-R-arylethynyl)alkanes (R = electron withdrawing or donating groups) were investigated and always provided a selective formation of 2,5 bis(arylethynyl)rhodacyclopentadienes, which were reported to be fluorescent despite presence of the heavy atom. To examine the influence of the ligand sphere around the rhodium center on the intersystem-crossing (ISC) processes in the above-mentioned fluorescent rhodacyclopentadienes and to increase the metal character in the frontier orbitals by destabilizing the Rh filled d-orbitals, a -electron donating group was introduced, namely acetylacetonato (acac). Interestingly, in 2010 Tay reacted [Rh(κ2-O,O-acac)(PMe3)2] with ,-bis(p-R-arylbutadiynyl)alkanes and observed not only the fluorescent 2,5 bis(arylethynyl)rhodacyclopentadienes, but also rhodium 2,2'-bph complexes as products, which were reported to be phosphorescent in preliminary photophysical studies. In this work, the reaction behavior of [Rh(κ2-O,O-acac)(L)2] (L = PMe3, P(p-tolyl)3) with different ,-bis(p-R-arylbutadiynyl)alkanes was established. Furthermore, the separation of the two isomers 2,5-bis(arylethynyl)rhodacyclopentadienes (A) and rhodium 2,2'-bph complexes (B), and the photophysical properties of those were explored in order to clarify their fundamentally different excited state behaviors. Reactions of [Rh(κ2-O,O-acac)(P(p-tolyl3)2)] with ,-bis(arylbutadiynyl)alkanes gives exclusively weakly fluorescent 2,5-bis(arylethynyl)rhodacyclopentadienes. Changing the phosphine ligands to PMe3, reactions of [Rh(κ2-O,O-acac)(PMe3)2] and , bis(arylbutadiynyl)alkanes afford two isomeric types of MC4 metallacycles with very different photophysical properties, as mentioned before. As a result of a normal [2+2] reductive coupling at rhodium, 2,5 bis(arylethynyl)rhodacyclopentadienes (A) are formed, which display intense fluorescence. Rhodium 2,2'-bph complexes (B), which show phosphorescence, have been isolated as a second isomer originating from an unusual [4+2] cycloaddition reaction and a subsequent -H-shift. Control of the isomer distribution, of 2,5-bis(arylethynyl)rhodacyclopentadienes (A) and rhodium biphenyl complexes (B), is achieved by modification of the linked , bis(arylbutadiynyl)alkane. Changing the linker length from four CH2 to three CH2 groups, dramatically favors the formation of the rhodium biphenyl isomer B, providing a fundamentally new route to access photoactive metal biphenyl compounds in good yields. This is very exciting as the photophysical properties of only a limited number of bph complexes of Ir, Pd and Pt had been explored. The lack of photophysical reports in the literature is presumably due to the limited synthetic access to various substituted 2,2'-bph transition metal complexes. On the other hand, as the reaction of [Rh(κ2-O,O-acac)(P(p-tolyl)3)2] with , bis(arylbutadiynyl)alkanes provides a selective reaction to give weakly fluorescent 2,5 bis(arylethynyl)rhodacyclopentadiene complexes with P(p-tolyl)3 as phosphine ligands, a different synthetic access to 2,5-bis(arylethynyl)rhodacyclopentadiene complexes with PMe3 as phosphine ligands was developed, preventing the time-consuming separation of the isomers. The weak rhodium-phosphorus bonds of 2,5-bis(arylethynyl)rhodacyclopentadiene complexes bearing P(p tolyl)3 as phosphine ligands, relative to those of related PMe3 complexes, allowed for facile ligand exchange reactions. In the presence of an excess of PMe3, a stepwise reaction was observed, giving first the mono-substituted, mixed-phosphine rhodacyclopentadiene intermediates and, subsequently, full conversion to the highly fluorescent 2,5 bis(arylethynyl)-rhodacyclopentadienes bearing only PMe3 ligands (by increasing the reaction temperature). With spectroscopically pure 2,5-bis(arylethynyl)rhodacyclopentadiene complexes A (bearing PMe3 as phosphine ligands) and rhodium 2,2-bph complexes B in hand, photophysical studies were conducted. The 2,5-bis(arylethynyl)rhodacyclopentadienes (A) are highly fluorescent with high quantum yields up to 54\% and very short lifetimes (τ = 0.2 - 2.5 ns) in solution at room temperature. Even at 77 K in glass matrices, no additional phosphorescence is observed which is in line with previous observations made by Steffen et al., who showed that SOC mediated by the heavy metal atom in 2,5-bis(arylethynyl)rhodacyclopentadienes and 2,5 bis(arylethynyl)iridacyclopentadienes is negligible. The origin of this fluorescence lies in the pure intra-ligand (IL) nature of the excited states S1 and T1. The HOMO and the LUMO are nearly pure  and * ligand orbitals, respectively, and the HOMO is energetically well separated from the filled rhodium d orbitals. The absence of phosphorescence in transition metal complexes due to mainly IL character of the excited states is not unusual, even for heavier homologues than rhodium with greater SOC, resulting in residual S1 emission (fluorescence) despite ISC S1→Tn being sufficiently fast for population of T1 states. However, there are very few complexes that exhibit fluorescence with the efficiency displayed by our rhodacyclopentadienes, which involves exceptionally slow S1→Tn ISC on the timescale of nanoseconds rather than a few picoseconds or faster. In stark contrast, the 2,2'-bph rhodium complexes B are exclusively phosphorescent, as expected for 2nd-row transition metal complexes, and show long-lived (hundreds of s) phosphorescence (Ф = 0.01 - 0.33) at room temperature in solution. As no fluorescence is detected even at low temperature, it can be assumed that S1→Tn ISC must be faster than both fluorescence and non-radiative decay from the S1 state. This contrasts with the behavior of the isomeric 2,5-bis(arylethynyl)rhodacyclopentadienes for which unusually slow ISC occurs on a timescale that is competitive with fluorescence (vide supra). The very small values for the radiative rate constants, however, indicate that the nature of the T1 state is purely 3IL with weak SOC mediated by the Rh atom. The phosphorescence efficiency of these complexes in solution at room temperature is even more impressive, as non-radiative coupling of the excited state with the ground state typically inhibits phosphorescence. Instead, the rigidity of the organic -system allows the ligand-based excited triplet state to exist in solution for up to 646 s and to emit with high quantum yields for biphenyl complexes. The exceptionally long lifetimes and small radiative rate constants of the rhodium biphenyl complexes are presumably a result of the large conjugated -system of the organic ligand. According to TD DFT studies, the T1 state involves charge-transfer from the biphenyl ligand into the arylethynyl moiety away from the rhodium atom. This reduces the SOC of the metal center that would be necessary for fast phosphorescence. These results show that the π-chromophoric ligand can gain control over the photophysical excited state behavior to such an extent that even heavy transition metal atoms like rhodium participate in increasing the fluorescence such as main-group analogues do. Furthermore, in the 2,2'-bph rhodium complexes, the rigidity of the organic -system allows the ligand-based excited triplet state to exist in solution for up to hundreds of s and to emit with exceptional quantum yields. Therefore, investigations of the influence of the ligand sphere around the rhodium center have been made to modify the photophysical properties and furthermore to explore the reaction behavior of these rhodium complexes. Bearing in mind that the P(p-tolyl)3 ligands can easily be replaced by the stronger -donating PMe3 ligands, ligand exchange reactions with N heterocyclic carbenes (NHCs) as even stronger -donors was investigated. Addition of two equivalents of NHCs at room temperature led to the release of one equivalent of P(p-tolyl3) and formation of the mono-substituted NHC rhodium complex. The reaction of isolated mono-NHC complex with another equivalent of NHC at room temperature did not result in the exchange of the second phosphine ligand. Moderate heating of the reaction to 60 °C, however, resulted in the formation of tetra-substituted NHC rhodium complex [Rh(nPr2Im)4]+[acac]-. To circumvent the loss of the other ligands in the experiments described above, a different approach was investigated to access rhodacyclopentadienes with NHC instead of phosphine ligands. Reaction of the bis-NHC complex [Rh(κ2-O,O-acac)(nPr2Im)2] with , bis(arylbutadiynyl)alkanes at room temperature resulted 2,5-bis(arylethynyl)-rhodacyclopentadienes with the NHC ligands being cis or trans to each other as indicated by NMR spectroscopic measurements and single-crystal X-ray diffraction analysis. Isolation of clean material and a fundamental photophysical study could not be finished for reasons of time within the scope of this work. Furthermore, shortening of the well conjugated -system of the chromophoric ligand (changing from tetraynes to diynes) was another strategy to examine the reaction behavior of theses ligands with rhodium(I) complexes and to modify the excited state behavior of the formed rhodacyclopentadienes. The reaction of [Rh(κ2-O,O-acac)(PMe3)2] with 1,7 diaryl 1,6-heptadiynes (diynes) leads to the selective formation of 2,5 bis(aryl)rhodacyclopentadienes. These compounds, however, are very weakly fluorescent with quantum yields ФPL < 1, and very short emission lifetimes in toluene at room temperature. Presumably, vibrational modes of the bis(phenyl)butadiene backbone leads to a higher rate constant for non-radiative decay and is thus responsible for the low quantum yields compared to their corresponding PMe3 complexes with the bis(phenylethynyl)butadiene backbone at room temperature. No additional phosphorescence, even at 77 K in the glass matrix is observed. Chancing the phosphine ligands to P(p-tolyl)3, reactions of [Rh(κ2-O,O-acac)(P(p-tolyl3)2)] with 1,7-diaryl-1,6-heptadiynes, however, resulted in a metal-mediated or -catalyzed cycloaddition reaction of alkynes and leads to full conversion to dimerization and trimerization products and recovery of the rhodium(I) starting material. This is intuitive, considering that P(Ar)3 (Ar = aryl) ligands are considered weaker -donor ligands and therefore have a higher tendency to dissociate. Therefore, rhodium(I) complexes with aryl phosphines as ligands have an increasing tendency to promote catalytic reactions, while the stronger -donating ligands (PMe3 or NHCs) promote the formation of stable rhodium complexes. Finally, in Chapter 4, the findings of the work conducted on N-heterocyclic carbenes (NHCs) and cyclic (alkyl)(amino)carbenes (CAACs) is presented. These compounds have unique electronic and steric properties and are therefore of great interest as ligands and organo-catalysts. In this work, studies of substitution reactions involving novel carbonyl complexes of rhodium and nickel are reported. For characterization and comparison of CAACmethyl with the large amount of data available for NHC and sterically more demanding CAAC ligands, an overview on physicochemical data (electronics, sterics and bond strength) is provided. The reaction of [Rh(-Cl)(CO)2]2 with 2 equivalents of CAACmethyl at low temperature afforded the mononuclear complex cis-[(RhCl(CO)2(CAACmethyl)]. However, reacting [Rh( Cl)(CO)2]2 with CAACmethyl at room temperature afforded a mixture of complexes. The mononuclear complex [(RhCl(CO)(CAACmethyl)2], the chloro-bridged complexes [(Rh2( Cl)2(CO)3(CAACmethyl)], [Rh(-Cl)(CO)(CAACmethyl)]2 and a carbon monoxide activation product were formed. The carbon monoxide activation product is presumably formed via the reaction of two equivalents of the CAAC with CO to give the bis-carbene adduct of CO, and subsequent rearrangement via migration of the Dipp moiety. While classical N-heterocyclic carbenes are not electrophilic enough to react with CO, related diamidocarbenes and alkyl(amino)carbenes undergo addition reactions with CO to give the corresponding ketenes. Consequently, to obtain the CAAC-disubstituted mononuclear complex selectively, 8 equivalents of CAACmethyl were reacted with 1 equivalent of [Rh(-Cl)(CO)2]2. For the evaluation of TEP values, [Ni(CO)3(CAAC)] was synthesized in collaboration with the group of Radius. With the complexes [(RhCl(CO)(CAACmethyl)2] and [Ni(CO)3(CAAC)] in hand, it was furthermore possible to examine the electronic and steric parameters of CAACmethyl. Like its bulkier congeners CAACmenthyl and CAACcy, the methyl-substituted CAAC is proposed to be a notably stronger -donor than common NHCs. While it has a very similar TEP value of 2046 cm-1, it additionally possess superior -acceptor properties (P = 67.2 ppm of phosphinidene adduct). CAACs appear to be very effective in the isolation of a variety of otherwise unstable main group and transition metal diamagnetic and paramagnetic species. This is due to their low-lying LUMO and the small singlet-triplet gap. These electronic properties also allow free CAACs to activate small molecules with strong bonds. They also bind strongly to transition metal centers, which enables their use under harsh conditions. One recent development is the use of CAACs as ligands in transition metal complexes, which previously were only postulated as short-lived catalytic intermediates.[292,345] The availability of these reactive species allows for a better understanding of known catalytic reactions and the design of new catalysts and, moreover, new applications. For example Radius et al.[320] prepared a CAAC complex of cobalt as a precursor for thin-film deposition and Steffen et al.[346] reported a CAAC complex of copper with very high photoluminescent properties, which could be used in LED devices. With the development of cheap and facile synthetic methods for the preparation of CAACs and their corresponding transition metals complexes, as well as the knowledge of their electronic properties, it is safe to predict that applications in and around this field of chemistry will continue to increase.}, subject = {{\"U}bergangsmetallkomplexe}, language = {en} } @phdthesis{Schwenk2018, author = {Schwenk, Nicola}, title = {Seeing the Light: Synthesis of Luminescent Rhodacyclopentadienes and Investigations of their Optical Properties and Catalytic Activity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149550}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Luminescent organotransition metal complexes are of much current interest. As the large spin-orbit coupling of 2nd and 3rd row transition metals usually leads to rapid intersystem crossing from S1 to T1, which enables phosphorescence, there is a special interest in using triplet-emitting materials in organic or organometallic light emitting diodes (OLEDs). Marder et al. have found that, reductive coupling of both para-R-substituted diarylbutadiynes and diaryldodecatetraynes on Rh(PMe3)4X leads to quantitative yields of bis(arylethynyl)-rhodacyclopentadienes with complete regiospecificity (R = BMes2, H, Me, OMe, SMe, CF3, CN, CO2Me, NMe2, NO2, C≡C-TMS and X = -C≡C-TMS, -C≡C-C6H4-4-NMe2, -C≡C-C≡C-C6H4-4-NPh2, Me, Cl).47,49 Unexpectedly, these compounds show intense fluorescence rather than phosphorescence (ɸf = 0.33-0.69, t = 1.2 3.0 ns). The substituent R has a significant influence on the photophysical properties, as absorption and emission are both bathochromically shifted compared to R = H, especially for R = π-acceptor. To clarify the mechanism of the formation of the rhodacyclopentadienes, and to investigate further their unique photophysical properties, a series of novel, luminescent rhodacyclopentadienes with dithiocarbamate as a bidentate ligand at the rhodium centre has been synthesised and characterised (R = NO2, CO2Me, Me, NMe2, SMe, Ar = C6F4-4-OMe). The rhodacyclopentadienes have been formed via reductive coupling of diaryl undecatetraynes with [Rh(k2-S,S`-S2CNEt2)(PMe3)2]. The structures of a series of such compounds were solved by single crystal X-ray diffraction and are discussed in this work. The compounds were fully characterised via NMR, UV/Vis and photoluminescence spectroscopy as well as by elemental analysis, high-resolution mass spectrometry (HRMS) and X-ray diffraction. When heating the reactions, another isomer is formed to a certain extent. The so-called dibenzorhodacyclopentadienes already appeared during earlier studies of Marder et al., when acetylacetonate (acac) was employed as the bidentate ligand at the Rh-centre. They are probably formed via a [4+2] cycloaddition reaction and C-H activation, followed by a β-H shift. Use of the perfluorinated phenyl moiety Ar = C6F4-4-OMe provided a total new insight into the mechanism of formation of the rhodacyclopentadiene isomers and other reactions. Besides the formation of the expected rhodacyclopentadiene, a bimetallic compound was generated, isolated and characterised via X-ray crystallography and NMR spectroscopy, elemental analysis and high resolution mass spectrometry. For further comparison, analogous reactions with [Rh(k2 S,S` S2CNEt2)(PPh3)2] and a variety of diaryl undecatetraynes (R = NO2 CO2Me, Me, NMe2, SMe, Ar = C6F4-4-OMe) were carried out. They also yield the expected rhodacyclopentadienes, but quickly react with a second or even third equivalent of the tetraynes to form, catalytically, alkyne cyclotrimerisation products, namely substituted benzene derivatives (dimers and trimers), which are highly luminescent. The rhodacyclopentadienes (R = NO2, CO2Me, Me, SMe, Ar = C6F4-4-OMe) are stable and were isolated. The structures of a series of these compounds were obtained via single crystal X-ray crystallography and the compounds were fully characterised via NMR, UV/Vis and photoluminescence spectroscopy as well as by elemental analysis and HRMS. Another attempt to clarify the mechanism of formation of the rhodacyclopentadienes involved reacting a variety of diaryl 1,3-butadiynes (R = CO2Me, Me, NMe2, naphthyl) with [Rh(k2 S,S` S2CNEt2)(PMe3)2]. The reactions stop at an intermediate step, yielding a 1:1 trans π-complex, confirmed by single crystal X-ray diffraction and NMR spectroscopy. Only after several weeks, or under forcing conditions (µw / 80 °C, 75 h), the formation of another major product occurs, having bound a second diaryl 1,3-butadiyne. Based on earlier results of Murata, the product is identified as an unusual [3+2] cycloaddition product, ϭ-bound to the rhodium centre.}, subject = {Rhodium}, language = {en} } @phdthesis{Pfaffinger2013, author = {Pfaffinger, Bernd}, title = {Darstellung und Reaktivit{\"a}t von unges{\"a}ttigten Borverbindungen - Borirene, 1,4-Azaborinine und Bor-haltige Komplexe des Rhodiums}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77704}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Es wurden verschiedene Borirene synthetisiert und auf ihre Reaktivit{\"a}t gegen{\"u}ber Lewis-Basen und {\"U}bergangsmetallkomplexen untersucht. Hierbei wurden verschiedene Boriren-Basen-Addukte dargestellt. Zudem konnte der erste Platin-BC-sigma-Komplex dargestellt werden. Des Weiteren wurde die Metall-vermittelte Darstellung von 1,4-Azaborininen vorgestellt und der Mechanismus der Reaktion aufgekl{\"a}rt. Im letzten Teil der Arbeit wurden Bor-haltige Komplexe des Rhodiums synthetisiert und ihre Reaktivit{\"a}t untersucht.}, subject = {Borirene}, language = {de} } @phdthesis{Pechmann2002, author = {Pechmann, Thomas}, title = {Der Weg zu Phosphan-verbr{\"u}ckten {\"U}bergangsmetall-Komplexen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-4930}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Das Ziel der vorliegenden Arbeit war es, erstmals einen Komplex mit einem verbr{\"u}ckenden Phosphanliganden darzustellen. Dies sollte ausgehend von den zweikernigen Rhodiumkomplexen des Typs [Rh2XX'(CPh2)2(SbR3)] und geeigneten Phosphanen erreicht werden. Es galt zun{\"a}chst, eine m{\"o}glichst große Palette von Stiban-verbr{\"u}ckten Verbindungen zu synthetisieren und ihr chemisches Verhalten im Allgemeinen und im Hinblick auf das gesteckte Ziel insbesondere ihre Reaktivit{\"a}t gegen{\"u}ber Phosphanen zu studieren. Die im eigenen Arbeitkreis synthetisierten Komplexe [Rh2XX'(CPh2)2(SbiPr3)] (X, X' = Cl, acac) reagieren mit CNtBu, SbEt3 oder Sb(CH2Ph)3 unter Substitution des SbiPr3-Liganden, wobei die Zweikernstruktur erhalten bleibt. Die Verbindungen [Rh2XX'(CPh2)2(SbiPr3)] [X = Cl, X' = acac (7), acac-f3 (8), dpm (9); X = X' = -acac (10), -dpm (11), Br (12), I (13)] k{\"o}nnen ausgehend von [Rh2Cl2(CPh2)2(SbiPr3)] und Na(acac), Na(acac-f3), Na(dpm), NaBr bzw. NaI dargestellt werden. Der Komplex 11 ist nur NMR-spektroskopisch charakterisiert. Stiban-verbr{\"u}ckte Carboxylatokomplexe sind durch Umsetzung von 10 mit CR3COOH (R = F, H) erh{\"a}ltlich. Mit {\"a}quimolaren Mengen an S{\"a}ure bilden sich die gemischten Komplexe [Rh2(acac)X(CPh2)2(SbiPr3)] [X = O2CCF3 (14), O2CCH3 (15)]. Setzt man die S{\"a}ure im {\"U}berschuß ein, so gelangt man zu den Bis(carboxylato)-Komplexen [Rh2X2(CPh2)2(SbiPr3)] [X = O2CCF3 (16), O2CCH3 (17)]. Die Struktur der Verbindung 17 ist r{\"o}ntgenographisch belegt. Ausgehend von den Verbindungen des Typs [Rh2XX'(CPh2)2(SbiPr3)], welche mindestens einen starken Chelatliganden wie acac, acac-f3 oder Acetat aufweisen, gelingt die Einf{\"u}hrung der sterisch wenig anspruchsvollen Phosphane PMe3, PEt3 und PMe2Ph in eine semiverbr{\"u}ckende bzw. verbr{\"u}ckende Position. Die Verbindungen 18 und 21 sind kristallstrukturanalytisch charakterisiert. W{\"a}hrend die PMe3- und PMe2Ph-Komplexe 21 und 40 in L{\"o}sung best{\"a}ndig sind und sich beim Erhitzen zersetzen, lagern sich die Komplexe [Rh2(acac)2(CPh2)2(PR3)] [R = Et (36), nBu (37)] in L{\"o}sung nahezu quantitativ in die gemischtvalenten Rh0-RhII-Verbindungen [(R3P)Rh(CPh2)2Rh(acac)2] [R = Et (38), nBu (39)] um. Der intramolekulare Reaktionsverlauf konnte durch kinetische Messungen best{\"a}tigt werden. Bei der Reaktion von 10 mit PMePh2 entsteht, ohne dass eine Phosphan-verbr{\"u}ckte Zwischenstufe nachweisbar ist, der Komplex [(MePh2P)Rh(CPh2)2Rh(acac)2] (41). Bei der Reaktion von 21 mit CO wird der PMe3-Ligand aus der verbr{\"u}ckenden auf eine terminale Position verdr{\"a}ngt und es bildet sich der Komplex 22, der einen verbr{\"u}ckenden Carbonylliganden aufweist. Analog zur Synthese der Stiban-verbr{\"u}ckten Carboxylatokomplexe 14 - 17 k{\"o}nnen auch die PMe3-Komplexe 26 - 28, die durch Stibansubstitution nicht zug{\"a}nglich sind, ausgehend von 21 und einer {\"a}quimolaren Menge bzw. einem {\"U}berschuß CR3COOH (R = F, H) dargestellt werden. Bei der Umsetzung von 21 mit einem {\"A}quivalent Essigs{\"a}ure erh{\"a}lt man allerdings ein Gemisch, das den Komplex 27 als Hauptprodukt enth{\"a}lt. Im Unterschied zur Reaktion von 21 mit CR3COOH, wird bei der Umsetzung mit einem {\"U}berschuß Phenol nur ein acac-Ligand durch Phenolat ersetzt und die Verbindung 29 gebildet. Bei der Reaktion von 21 mit einem Mol{\"a}quivalent Me3SiX (X = Cl, Br, I) erfolgt selektiv die Substitution eines acac-Liganden durch einen Halogenoliganden. Die Darstellung der Komplexe [{Rh2X2(CPh2)2(PMe3)}n] [X = Cl (32), Br (33), I (34)] gelingt durch Umsetzung von 21 mit einem großen {\"U}berschuß Me3SiCl bzw. mit 2 {\"A}quivalenten Me3SiX (X = Br, I). W{\"a}hrend der Dichloro-Komplex 32 im Kristall als dimere Einheit vorliegt besitzt der Diiodo-Komplex 34 eine zweikernige Struktur. Dies konnte kristallstrukturanalytisch belegt werden. Der PMe2Ph-Komplex 43 ist durch Umsetzung von 40 und der PEt3-Komplex 44 durch Umsetzung von 19 mit Me3SiCl im {\"U}berschuß erh{\"a}ltlich. Nicht nur sterisch wenig anspruchsvolle Trialkylphosphanliganden sind in der Lage, zwei Metallzentren zu verbr{\"u}cken. So erh{\"a}lt man durch Umsetzung der Verbindungen [(R3P)Rh(CPh2)2Rh(acac)2] (R = iPr, Ph) mit HCl die Phosphan-verbr{\"u}ckten Komplexe [Rh2Cl2(CPh2)2(PR3)] [R = iPr (45), Ph (46)]. Die Darstellung des ersten Arsan-verbr{\"u}ckten Komplexes [Rh2(acac)2(CPh2)2(AsMe3)] (47) gelingt ausgehend von Verbindung 10 und AsMe3. Der verbr{\"u}ckende AsMe3-Ligand in 47 kann leicht durch SbiPr3, PEt3, PnBu3 oder PMe2Ph substituiert werden. Analog zum PMe3-Komplex 21 reagiert 47 mit einem {\"A}quivalent Me3SiCl zum gemischten Komplex [Rh2(acac)Cl(CPh2)2(AsMe3)] (48) und mit einem großen {\"U}berschuss Me3SiCl zum Vierkernkomplex [{Rh2Cl2(CPh2)2(AsMe3)}2] (49). Die Struktur von 49 ist kristallographisch gesichert.}, subject = {{\"U}bergangsmetallkomplexe}, language = {de} } @phdthesis{Kerner2021, author = {Kerner, Florian Tobias}, title = {Reactions of rhodium(I) with diynes and studies of the photophysical behavior of the luminescent products}, doi = {10.25972/OPUS-20910}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-209107}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Chapter 1 deals with the reaction of [Rh(acac)(PMe3)2] with para-substituted 1,4-diphenylbuta-1,3-diynes at room temperature, in which a complex containing a bidentate organic fulvene moiety, composed of two diynes, σ-bound to the rhodium center is formed in an all-carbon [3+2] type cyclization reaction. In addition, a complex containing an organic indene moiety, composed of three diynes, attached to the rhodium center in a bis-σ-manner is formed in a [3+2+3] cyclization process. Reactions at 100 °C reveal that the third diyne inserts between the rhodium center and the bis-σ-bound organic fulvene moiety. Furthermore, the formation of a 2,5- and a 2,4-bis(arylethynyl)rhodacyclopentadiene is observed. The unique [3+2] cyclization product was used for the synthesis of a highly conjugated organic molecule, which is hard to access or even inaccessible by conventional methods. Thus, at elevated temperatures, reaction of the [3+2] product with para-tolyl isocyanate led to the formation of a purple organic compound containing the organic fulvene structure and one equivalent of para-tolyl isocyanate. The blue and green [3+2+3] complexes show an unusually broad absorption from 500 - 1000 nm with extinction coefficients ε of up to 11000 M-1 cm-1. The purple organic molecule shows an absorption spectrum similar to those of known diketopyrrolopyrroles. Additionally, the reaction of [Rh(acac)(PMe3)2] with para-tolyl isocyanate was investigated. A cis-phosphine complex of the form cis-[Rh(acac)(PMe3)2(isocyanate)2] with an isocyanate dimer bound to the rhodium center by one carbon and one oxygen atom was isolated. Replacing the trimethylphosphine ligands in [Rh(acac)(PMe3)2] with the stronger σ-donating NHC ligand Me2Im (1,3-dimethylimidazolin-2-ylidene), again, drastically alters the reaction. Similar [3+2] and [3+2+3] products to those discussed above could not be unambiguously assigned, but cis- and trans-π-complexes, which are in an equilibrium with the two starting materials, were formed. Chapters 2 is about the influence of the backbone of the α,ω-diynes on the formation and photophysical properties of 2,5-bis(aryl)rhodacyclopentadienes. Therefore, different α,ω-diynes were reacted with [Rh(acac)(PMe3)2] and [Rh(acac)(P(p-tolyl)3)2] in equimolar amounts. In general, a faster consumption of the rhodium(I) starting material is observed while using preorganized α,ω-diynes with electron withdrawing substituents in the backbone. The isolated PMe3-substituted rhodacyclopentadienes exhibit fluorescence, despite the presence of the heavy atom rhodium, with lifetimes τF of < 1 ns and photoluminescence quantum yields Φ of < 0.01 as in previously reported P(p-tolyl)-substituted 2,5-bis(arylethynyl)rhodacyclopentadienes. However, an isolated P(p-tolyl)-substituted 2,5-bis(aryl)rhodacyclopentadiene shows multiple lifetimes and different absorption and excitation spectra leading to the conclusion that different species may be present. Reaction of [Rh(acac)(Me2Im)2] with dimethyl 4,4'-(naphthalene-1,8-diylbis(ethyne-2,1-diyl))dibenzoate, results in the formation of a mixture trans- and cis-NHC-substituted 2,5-bis(aryl)rhodacyclopentadienes. In chapter 3 the reaction of various acac- and diethyldithiocarbamate-substituted rhodium(I) catalysts bearing (chelating)phosphines with α,ω-bis(arylethynyl)alkanes (α,ω-diynes), yielding luminescent dimers and trimers, is described. The photophysical properties of dimers and trimers of the α,ω-diynes were investigated and compared to para-terphenyl, showing a lower quantum yield and a larger apparent Stokes shift. Furthermore, a bimetallic rhodium(I) complex of the form [Rh2(ox)(P(p-tolyl)3)4] (ox: oxalate) was reacted with a CO2Me-substituted α,ω-tetrayne forming a complex in which only one rhodium(I) center reacts with the α,ω-tetrayne. The photophysical properties of this mixed rhodium(I)/(III) species shows only negligible differences compared to the P(p-tolyl)- and CO2Me-substituted 2,5-bis(arylethynyl)rhodacyclopentadiene, previously synthesized by Marder and co-workers.}, subject = {{\"U}bergangsmetallkomplexe}, language = {en} } @phdthesis{Canepa2002, author = {Canepa, Giuseppe}, title = {Die vielseitigen Koordinationsmodi von Phosphanliganden mit integrierten C6-Aromaten am Rhodium und Iridium}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3938}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Aren-Halbsandwichkomplexe des Rhodiums und Iridiums wurden dargestellt und ihre Reaktivit{\"a}t gegen{\"u}ber Substrate wie Wasserstoff, Olefine oder Alkine untersucht. Neu synthetisierte Trialkylphosphane mit integrierten Arylgruppen wurden als Chelatliganden eingesetzt sowie intramolekulare C-H Aktivierungen mit diesen Phosphanen durchgef{\"u}hrt.}, subject = {Halbsandwich-Verbindungen}, language = {de} } @phdthesis{CallejasGaspar2002, author = {Callejas-Gaspar, Berta}, title = {Ein- und mehrkernige Rhodium- und Iridiumkomplexe mit konjugierten organischen Ketten als Br{\"u}ckenliganden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3040}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Die metallorganische Chemie spielt eine große Rolle in der Materialwissenschaft. Als besonders interessant hat sich die Einf{\"u}hrung von {\"U}bergangsmetallen in organischen Polymer-Ketten bew{\"a}hrt, da man damit die physikalischen Eigenschaften dieser neuartigen Polymere ver{\"a}ndern kann. Die große Variationsbreite an Strukturen und Oxidations-Stufen der metallorganischen Fragmente hat zur Entwicklung von Fl{\"u}ssigkristallen sowie von Kunststoffen mit magnetischen oder nicht-lineare optischen Eigenschaften gef{\"u}hrt. In dieser Arbeit wird {\"u}ber die Synthese von zwei- und mehrkernigen Komplexen mit konjugierten Kohlenstoffbr{\"u}cken und Vinyliden- oder Acetylenliganden als Endgruppen des Typs R1CºC-[M]=C=C(H)-R-(H)C=C=[M]-CºCR2 (A) und R1(H)C=C=[M]-CºC-R-CºC-[M]=C=C(H)R2 (B) (R1 = Akzeptorgruppe, R2 = Donorgruppe, R = Arylgruppe, [M] = {\"U}bergangsmetall-Komplexfragment) berichtet. Eine Synthesestrategie daf{\"u}r wurde zuerst die Darstellung von eins- und mehrkernigen Fluoro- und Hydroxokomplexen der allgemeinen Zusammensetzung trans-[MX(L)(PiPr3)2] (M = Rh, Ir; X = OH, F; L = C=CHR', CO, CNC6H3-2,6-Me2), trans-[{MX(PiPr3)2}n{µ-C6H(6-n) (CH=C=)n}] (n = 2, 3) und zweitens ihre Reaktivit{\"a}t gegen{\"u}ber stannylierten 1-Alkinen und Dialkinen. Die Bedeutung der Hydroxo- und Fluoro-Komplexe liegt in ihrer erh{\"o}hten Reaktivit{\"a}t gegen{\"u}ber Br{\"o}nsted-S{\"a}uren und stannylierten Alkinen im Vergleich zu den Chloro-, Bromo und Iodo-Analoga. Solche Komplexe wurden auch mit Diisocyaniden als Br{\"u}cken-Ligand synthetisiert. Wegen der Neuartigkeit von Alkinyl(isocyanid)rhodium(I)-Komplexen sollten verschiedene Syntheserouten zu diesen Verbindungen erkundet werden. Ihre Reaktivit{\"a}t wurde auch untersucht. Vor diesem Hintergrund war das Ziel der vorliegenden Arbeit, zun{\"a}chst den Kreis der bekannten Alkinyl- und Vinyliden-{\"U}bergangsmetallkomplexe mit einem, zwei oder drei Metallzentren zu erweitern, in denen die Metalle durch ein konjugiertes p-Elektronensystem verbunden sind. An solchen Systemen sollte im Hinblick auf ihre Anwendungen als NLO-Materialien der Einfluss von Ligandsubstitution systematisch untersucht werden. In diesem Zusammenhang wurde eine Untersuchung mit Hilfe von IR- und RAMAN-Spektroskopie sowie quantenchemische Berechnungen des trans-Einflusses der Halogenliganden in quadratisch-planaren Rhodium(I)-Komplexe des Typs trans-[MX(L)(PiPr3)2] (X = F, Cl, Br, I; L = CO, =C=CH2, CNC6H3-2,6-Me2) in Kooperation mit D. Moigno am Institut f{\"u}r Physikalische Chemie am Lehrstuhl von Prof. W. Kiefer durchgef{\"u}hrt.}, subject = {Rhodiumkomplexe}, language = {de} }