@phdthesis{Schulz2012, author = {Schulz, Alexander}, title = {Molekulare Mechanismen des protonengekoppelten Zuckertransportes in Mesophyllvakuolen von Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85596}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Im Rahmen dieser Arbeit konnten neue Erkenntnisse zum Zuckertransport {\"u}ber die Vakuolenmembran von Arabidopsis thaliana sowie dessen Energetisierung durch die V-ATPase erlangt werden. Hierf{\"u}r wurden Patch-Clamp-Experimente konzipiert, die eine direkte Erfassung der Transportmechanismen, Transporteigenschaften sowie Triebkr{\"a}fte des vakuol{\"a}ren Zuckertransportes erm{\"o}glichten. Zus{\"a}tzlich wurden Lokalisations- und Interaktionsstudien zu ausgew{\"a}hlten Transportern mit Hilfe der konfokalen Laser Scanning Mikroskopie durchgef{\"u}hrt. Im Einzelnen wurden folgende Aspekte hinsichtlich des pflanzlichen Zuckertransports und dessen Energetisierung bearbeitet. Mittels der Patch-Clamp-Technik konnten vakuol{\"a}re glucose- und saccharose-induzierte Protonen-Transportkapazit{\"a}ten in Mesophyllvakuolen von Wildtyp-pflanzen aufgel{\"o}st werden, die eindeutig einen Antiportmechanismus f{\"u}r beide Zucker zur Beladung der Vakuole vorschlagen. Dabei zeigten die Glucose- und Saccharoseantiporter eine geringe Affinit{\"a}t und hohe Transportkapazit{\"a}t f{\"u}r den jeweiligen Zucker. Auf molekularer Ebene konnte die protonengekoppelte Glucose- und Saccharoseaufnahme in die Vakuolen maßgeblich dem putativen Monosaccharid¬transporter AtTMT1/2 zugeordnet werden, der folglich als erster Glucose-Saccharose/Protonen-Antiporter identifiziert wurde. Im Zuge dieser Untersuchungen wurden der Zucker- und der pH-Gradient als Triebkr{\"a}fte der Zuckertransportaktivit{\"a}t herausgearbeitet. In diesem Zusammenhang konnte ferner ein Beitrag zur quan¬titativen Charakterisierung der V-ATPase geleistet werden, welche den Einfluss der V-ATPase aufgrund ihrer pH-abh{\"a}ngigen H+-Pumpaktivit{\"a}t auf die pH-Hom{\"o}ostase belegt. Demzufolge scheint die V-ATPase als pH-regulierter Energielieferant f{\"u}r die Zuckertransporter zu fungieren. Dar{\"u}ber hinaus wurde die mitogenaktivierte Proteinkinase AtVIK1 als potentieller Regulationsfaktor von AtTMT1 identifiziert. Dies gelang durch den Nachweis einer spezifischen physikalischen Interaktion zwischen AtTMT1 und AtVIK1 mittels der Bimolekularen Fluoreszenzkomplemen¬tation. Neben der AtTMT1/2-vermittelten Aufnahme der beiden Zucker Glucose und Saccharose wurde ebenso die Zuckerentlassung aus der Vakuole n{\"a}her charakterisiert. Mit Hilfe vergleichender Patch-Clamp-Analysen von verschiedenen Zuckertransporter-Verlustmutanten konnte AtERDl6 als Glucose/Protonen-Symporter identifiziert werden, der sich f{\"u}r den Glucoseexport aus der Vakuole verantwortlich zeigt. In Bezug auf den Saccharosetransport aus der Vakuole konnte erstmals die Saccharose/Protonen-Symportfunktion von AtSUC4 in planta nach dessen transienter {\"U}berexpression in Zuckertransporter-Verlustmutanten eindeutig aufgel{\"o}st und nachgewiesen werden. Desweiteren offenbarten die hier erlangten Ergebnisse bez{\"u}glich der Glucose/Saccharose-Beladung und -Entladung von Mesophyllvakuolen, dass weitere protonengekoppelte Zuckertransporter, neben AtTMT1/2 and AtERDl6, in diesem Zelltyp existieren, deren molekulare Natur es jedoch noch gilt herauszufinden.}, subject = {Ackerschmalwand}, language = {de} } @phdthesis{ReuterWeissenberger2022, author = {Reuter-Weissenberger, Philipp}, title = {The role of a fungal-specific transcription regulator on vacuolar biology and host interaction in \(Candida\) \(albicans\)}, doi = {10.25972/OPUS-25928}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259287}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Microorganisms that colonize the human body face large fluctuations in their surroundings. Therefore, those microbes developed sophisticated mechanisms that allow them to adapt their cell biology and maintain cellular homeostasis. One organelle vital to preserve cell physiology is the vacuole. The vacuole exhibits a wide range of functions and is able to adjust itself in response to both external and internal stimuli. Moreover, it plays an important role in host interaction and virulence in fungi such as Candida albicans. Despite this connection, only a few regulatory proteins have been described to modulate vacuolar biology in fungal pathogens. Furthermore, whether such regulation alters fungus-host interplay remains largely unknown. This thesis focuses on the characterization of ZCF8, a fungus-specific transcription regulator in the human-associated yeast C. albicans. To this end, I combined genome-wide protein-DNA interaction assays and gene expression analysis that identified genes regulated by Zcf8p. Fluorescence microscopy uncovered that several top targets of Zcf8p localize to the fungal vacuole. Moreover, deletion and overexpression of ZCF8 resulted in alterations in vacuolar morphology and in luminal pH and rendered the fungus resistant or susceptible to a vacuole-disturbing drug. Finally, in vitro adherence assays showed that Zcf8p modulates the attachment of C. albicans to human epithelial cells in a vacuole-dependent manner. Given those findings, I posit that the previously uncharacterized transcription regulator Zcf8p modulates fungal attachment to epithelial cells in a manner that depends on the status of the fungal vacuole. Furthermore, the results highlight that vacuolar physiology is a substantial factor influencing the physical interaction between Candida cells and mammalian mucosal surfaces.}, subject = {Vakuole}, language = {en} } @phdthesis{Latz2007, author = {Latz, Andreas}, title = {Lokalisation, Funktion und Regulation pflanzlicher Tandem-Poren-Kaliumkan{\"a}le in Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-24915}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Lokalisation - Alle TPKs bis auf TPK4, der in der Plasmamembran lokalisiert ist, sind im Tonoplasten lokalisiert. - Das 14-3-3-Bindemotiv bzw. der komplette N-Terminus spielt im Gegensatz zu den tierischen TPK´s keine Rolle beim Targeting (und evtl. auch beim Assembly), da ein Austausch der N-Termini bzw. Mutationen im 14-3-3- Bindemotiv keinen Einfluss auf die subzellul{\"a}re Lokalisation hat. - Im C-Terminus ist m{\"o}glicherweise ein strukturelles Motiv bzw. eine Erkennungssequenz f{\"u}r das Targeting in unterschiedliche Zielmembranen lokalisiert. Eventuell ist hier auch eine Assembly-Dom{\"a}ne f{\"u}r den Zusammenbau der unterschiedlichen Kanaluntereinheiten vorhanden. TPK4 - Der Kaliumkanal TPK4 wird nach Agro-Infiltration in dem pflanzlichen Expressionssystem Nicotiana benthamiana exprimiert. - TPK4 ist auch in diesem Expressionssystem in der Plasmamembran der Zelle lokalisiert. - Die Str{\"o}me, welche aus Mesophyllzellen von TPK4 infiltrierten Bl{\"a}ttern abgeleitet wurden, gleichen denen, von TPK4 exprimierenden Oocyten von Xenopus laevis. Somit hat TPK4 in beiden Expressionssystemen die gleichen elektrophysiologischen Eigenschaften. TPK1 - TPK1 bindet {\"u}ber die C-terminalen EF-H{\"a}nde Calcium und wird durch diese Interaktion aktiviert. - TPK1 interagiert phosphospezifisch und isotypspezifisch mit dem 14-3-3- Protein GRF6. Diese Interaktion f{\"u}hrt zur Aktivierung des Kanals. - Die Kinasen CPK3 und CPK29, welche das 14-3-3-Bindemotiv von TPK1 phosphorylieren um eine Interaktion mit 14-3-3-Proteinen zu erm{\"o}glichen, geh{\"o}ren zur Familie der CDPKs - Diese Kinasen sind selbst Calcium aktiviert und aller Wahrscheinlichkeit nach unter physiologischen Bedingungen inaktiv. Erst ein Anstieg der freien Calciumkonzentration f{\"u}hrt zur Aktivierung der Kinase in der Zelle und damit zur Aktivierung des Kanals. - Das 14-3-3-Bindemotiv ist das einzige Target der CDPK´s im N-Terminus von TPK1 - Die Phosphatase, welche das 14-3-3-Bindemotiv von TPK1 dephosphoryliert geh{\"o}rt zur Familie der PP2A-Proteinphosphatasen. - Es ist m{\"o}glich, dass die Kinase und damit auch der Kanal durch Salzstress und durch Kaliumunterversorgung aktiviert werden und somit die Signalkaskade f{\"u}r die Aktivierung von TPK1 {\"u}ber Kinasen/14-3-3/Calcium in einen stressphysiologischen Kontext involviert ist. - tpk1.3- und cpk3.1-Verlustmutanten zeigen eine Reduktion in der Keimungsrate unter Salzstress und limitierten Kaliumangebot. Es kann {\"u}ber einen funktionalen Komplex bestehend aus TPK1 und TPC1 zur Aufrechterhaltung der Na+/K+-Homeostase und der elektroneutralen Aufnahme von Na+ in die Vakuole unter Salzstressbedingungen spekuliert werden.}, subject = {Ackerschmalwand}, language = {de} } @phdthesis{Krause2012, author = {Krause, Diana}, title = {Transport der Hauptosmotika an der vakuol{\"a}ren Membran von Schließzellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75043}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Im Rahmen der vorliegenden Arbeit wurden neue Einblicke bez{\"u}glich des Transport-prozesses vakuol{\"a}rer Protonenpumpen, Zuckertransporter und des SV-Kanals von Arabidopsis thaliana gewonnen: 1. Mittels Patch-clamp-Technik wurden ATP- und Pyrophosphat-induzierte Pump-str{\"o}me an Mesophyllvakuolen des Wildtyps gemessen. Die durch ATP hervor-gerufenen Pumpstr{\"o}me konnten durch den spezifischen V-ATPase-Inhibitor Concanamycin A vollst{\"a}ndig inhibiert werden. Messungen an der V-ATPase-Doppelmutante vha-a2-vha-a3 hingegen zeigten eine kaum vorhandene ATPase-Aktivit{\"a}t auf. Die vakuol{\"a}re Pyrophosphatase-Aktivit{\"a}t der vha-a2-vha-a3-Mutante war mit dem WT vergleichbar und konnte die verminderten Pumpstr{\"o}me der V-ATPase nicht kompensieren. Zudem wurde an A. thaliana WT-Pflanzen die Expressionsrate und Pumpstromdichte der V-ATPase von Schließzellen und Mesophyllzellen untersucht. Dabei konnte bei Schließzellen eine h{\"o}here Expressionsrate sowie Pumpleistung im Vergleich zu Mesophyllzellen detektiert werden, wodurch an der vakuol{\"a}ren Membran von Schließzellen eine starke protonenmotorische Kraft generiert werden kann. 2. Des Weiteren wurden die Transporteigenschaften des im Tonoplasten lokalisierten Transportproteins AtINT1 an Arabidopsis Mesophyllzellen des Wildtyps n{\"a}her untersucht. Unter inversen pH-Wert-Bedingungen konnte AtINT1 als Symporter identifiziert werden, welcher myo-Inositol H+-gekoppelt aus der Vakuole in das Cytosol transportiert. 3. {\"U}berdies wurde eine elektrophysiologische Charakterisierung des AtSUC4-Transporters durchgef{\"u}hrt. Unter einem physiologischen Protonengradienten konnte bei WT- und Atsuc4.1-Vakuolen ausschließlich ein Saccharose/H+ ge-triebener Antiportmechanismus detektiert werden. Im Gegensatz dazu zeigten 60 \% der AtSUC4-{\"U}E unter inversen pH-Gradienten w{\"a}hrend Saccharose-Applikation Str{\"o}me, die auf einen Saccharose/H+-Symportmechanismus hinweisen. Bei der Atsuc4.1-Verlustmutante hingegen konnten unter gleichen L{\"o}sungsbedingungen ausschließlich Str{\"o}me detektiert werden, die mit einem Saccharose/H+-gekoppelten Antiportmechanismus in Einklang zu bringen sind. Durch die Erkenntnisse der Arbeitsgruppe unter Norbert Sauer, Universit{\"a}t Erlangen, wird die Vermutung untermauert, dass AtSUC4 Saccharose im Symport mit H+ aus der Vakuole in das Cytosol transportiert und somit eine Rolle bei der Remobilisierung der in der Vakuole gespeicherten Saccharose {\"u}bernimmt. 4. Dar{\"u}ber hinaus konnten Studien am nichtselektiven spannungsabh{\"a}ngigen „slow-vacuolar-channel" (SV-Kanal) von Arabidopsis Mesophyllvakuolen durchgef{\"u}hrt werden. Dabei wurde das 14-3-3-Protein GRF6 als regulatorisches Protein identifiziert, welches die SV-Kanalaktivit{\"a}t stark verringert. Die gain-of-function Mutante fou2 mit der Punktmutation D454N im TPC1-Kanalprotein zeigt abweichende Kanaleigenschaften zum WT auf. Das Aktivie-rungspotential des fou2-SV-Kanals liegt bei 30 mV negativeren Membranspan-nungen, was die Offenwahrscheinlichkeit des SV-Kanals unter physiologischen Membranspannungen erh{\"o}ht. Die fou2-Mutation beeinflusst außerdem die luminale Ca2+-Bindestelle des SV-Kanals, wodurch die Affinit{\"a}t bzgl. luminalem Ca2+ geringer ist und die fou2-SV-Kanalaktivit{\"a}t bei hohen luminalen Ca2+-Konzentrationen bestehen bleibt. Die absolute Offenwahrscheinlichkeit des WT-SV-Kanals nimmt mit Ans{\"a}uern des vakuol{\"a}ren Lumens im Gegensatz zum fou2-SV-Kanal stark ab, die Einzelkanalleitf{\"a}higkeit des WT- als auch des fou2-SV-Kanals dagegen zu. Anhand der durchgef{\"u}hrten Messungen konnte eine regulatorische, vakuol{\"a}r gelegene Ca2+-Bindestelle des TPC1-kodierten Kanals lokalisiert und charakterisiert werden, welche sich vermutlich nahe am Spannungssensor befindet und unter physiologischen Membranspannungen einen einw{\"a}rtsgerichteten Kationenstrom erm{\"o}glicht. 5. Ferner wurden SV-Kan{\"a}le von Schließzellen untersucht und deren spezifische Eigenschaften mit Mesophyll-SV-Kan{\"a}len verglichen. In Schließzellen liegt neben einer erh{\"o}hten Transkriptmenge des single-copy Gens TPC1 eine h{\"o}here Stromdichte des SV-Kanals vor. Unter einw{\"a}rtsgerichtetem K+-Gradienten liegt das Aktivierungspotential von Schließzell-SV-Kan{\"a}le um 30 mV negativer als bei Mesophyllvakuolen, was unter physiologischen Membranspannungen zu einem ausgepr{\"a}gtem K+-Einstrom f{\"u}hrt. Dar{\"u}ber hinaus zeigte der Schließzell-SV-Kanal eine h{\"o}here Permeabilit{\"a}t von Na+- gegen{\"u}ber K+-Ionen (1,3:1) auf. W{\"a}hrend Schließzell- und Mesophyll-SV-Kan{\"a}le eine vergleichbare luminale Ca2+-Sensitivit{\"a}t aufweisen, zeigen Schließzell-SV-Kan{\"a}le eine h{\"o}here cytosoli-sche Ca2+- und vakuol{\"a}re pH-Sensitivit{\"a}t auf. Sequenzanalysen der TPC1-cDNA zeigten, dass die Zelltypspezifischen Unterschiede des SV-Kanals nicht durch posttranskriptionale Modifikation hervorgerufen werden.}, subject = {Ackerschmalwand}, language = {de} } @phdthesis{Herweg2018, author = {Herweg, Jo-Ana}, title = {Die Simkania-Vakuole: Die Rolle von ER, retro-/anterograden Protein- und Lipidtransport}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136844}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Simkania negevensis (Sn) is a Chlamydia-like obligate intracellular bacterium which replicates within a membrane bound vacuole, termed SCV (Simkania-containing vacuole). The SCV is a unique compartment closely associated with ER-membranes, consequently ER-stress is blocked by the bacteria. SCV morphology is similar among epithelial cells (HeLa229, A549, HEp-2) and macrophages (THP1). The SCV represents the first intracellular interface between the host and pathogen which serves as a replication niche. Identifying human and bacterial factors associated with ER-SCV-membranes should contribute towards the understanding of SCV composition and formation as well as interactions with ER or transports. Comparative studies of the SCV should indicate similarities to the chlamydial inclusion since some host cell factors are already known for Chlamydia. In this thesis, a purification protocol has been established that is applicable to HeLa229 and THP1 ER-SCV-membranes and has been further utilized for proteome and lipidome analyses. 302 bacterial and 1178 human proteins composing ER-SCV-membranes and 885 bacterial proteins composing purified Sn have been identified by using label-free mass spectrometry measurements. Among the human factors of non or Sn infected ER-(SCV-) membranes we found 51 enriched or depleted proteins in addition to 57 transport associated ones that indicated infection induced differences among intracellular protein transport. Contrary regulation of retrograde and anterograde transported proteins could be confirmed by using RNA interference and inhibitor tests, whereby Clathrin-associated and COPI vesicles seem to play a central role. Application of Retro-inhibitors, which interfered with retrograde transport processes between endosome to Golgi or early to late endosomes, as well as Bafilomycin A1 (retrograde, late endosomes and lysosomes) and Brefeldin A (anterograde, ER and Golgi) exerted a strong influence on SCV formation, morphology and intracellular lipid transport. By using label-free mass spectrometry measurements and thin layer chromatography we could determine differences in lipid levels within Sn infected cells, ER-SCV-membranes and purified Sn in comparison to uninfected cells. In addition to lipid enrichment or depletion in whole-cell extracts and ER-SCV-membranes, we identified two infection-specific lipids, cholesterol-ß-Dglucoside and PE 30:0. Further, high-throughput RNA interference tests indicated a dependence of Sn infections on endosome to Golgi and Clathrin-associated vesicle transports. Taken together, we were able to identify initial potential SCV-associated proteins and lipids that were connected to bacterial infection. Furthermore, SCV formation and Sn infectiousness depends on retrograde transport processes and therefore also on acquisition of nutrients, such as lipids.}, subject = {Simkania}, language = {de} } @phdthesis{Graus2020, author = {Graus, Dorothea}, title = {Auswirkungen einer V-PPase-{\"U}berexpression auf Nicotiana benthamiana Blattzellen und deren physiologische Bedeutung unter Salzbelastung}, doi = {10.25972/OPUS-19367}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193676}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Vakuol{\"a}re PPasen (V-PPase) in Landpflanzen dienen dem Transport von Protonen in die Vakuole und dem Aufbau eines elektrochemischen Gradienten, w{\"a}hrend sie gleichzeitig durch Hydrolyse eine Anreicherung des toxischen PPi im Cytosol verhindern. Zahlreiche Publikationen bewiesen bereits positive Effekte der stabilen V-PPase-{\"U}berexpression in Pflanzen. Unter anderem zeigte die Ackerschmalwand, Tabak, Reis und Tomate eine erh{\"o}hte Biomasse und gesteigerte Stresstoleranz auf Grund einer erh{\"o}hten stabilen V-PPase Ex-pression. Um die zugrundeliegenden Prozesse ohne potenzielle pleiotropische Effekte w{\"a}hrend der Pflanzenentwicklung zu analysieren, wurden in der vorliegenden Dissertation die physiologischen Auswirkungen einer transienten V-PPase-{\"U}berexpression in Nicotiona benthamiana Bl{\"a}ttern und die Einflussnahme von NaCl quantitativ erfasst. Zu diesem Zweck wurden zwei endogene V-PPasen (NbVHP1 und NbVHP2) aus N. bentha-miana zun{\"a}chst bioinformatisch und dann auf Transkriptionsebene mittels quantitativer Real-Time-PCR identifiziert. Die endogenen V-PPasen wurden mittels der Agrobakterien-Infiltrationstechnik transient in N. benthamiana Bl{\"a}ttern und ihre vakuol{\"a}re Lokalisation mit Hilfe von Fluoreszenzmarkern best{\"a}tigt. Die Protonenpump-Funktion der {\"u}berexprimierten NbVHPs konnte mit der Patch-Clamp-Technik anhand des vier-fach erh{\"o}hten Protonenpump-stroms in den isolierten Mesophyllvakuolen verifiziert werden. Im Zuge der elektro-physiologischen Charakterisierung der endogenen N. benthamiana V-PPasen konnte die f{\"u}r V-PPasen typische Sensitivit{\"a}t gegen{\"u}ber cytosolischem Calcium best{\"a}tigt werden, welche sich bei einem erh{\"o}hten Calcium-Spiegel in einer Hemmung der Pumpstr{\"o}me {\"a}ußerte. Ferner wurde ihre gleichartige Substrataffinit{\"a}t (Km von 65 µM PPi) unabh{\"a}ngig des vakuol{\"a}ren pHs zwischen 5,5 und 7,5 festgestellt. Der Vergleich dieser Ergebnisse mit analog durchgef{\"u}hrten Messungen an der bereits publizierten AtVHP1 von A. thaliana best{\"a}tigte die große Homo-logie der V-PPasen von Landpflanzen. Im Gegensatz zu den erw{\"u}nschten Auswirkungen der stabilen V-PPase {\"U}berexpression resultierte diese starke transiente {\"U}berexpression nach drei Tagen im Absterben makroskopischer Blattbereiche. Das Ausmaß dieser Nekrosen wurde anhand des vorhandenen PhotosystemII in den transformierten Bl{\"a}ttern mit der Puls-Amplituden-Modulations-Technik quantifiziert. Die analoge transiente {\"U}berexpression einer l{\"o}slichen PPase (IPP1) f{\"u}hrte allerdings zu keinerlei negativen Effekten f{\"u}r die Pflanze, wodurch die erh{\"o}hte Protonentransportaktivit{\"a}t im Gegensatz zur Hydrolyseaktivit{\"a}t der V-PPasen als Ursache des Zellsterbens verifiziert werden konnte. Aufgrund dieser unerwarteten negativen Auswirkungen der transienten V-PPase-{\"U}berex-pression auf die Blattvitalit{\"a}t wurde zus{\"a}tzlich die Salzstresstoleranz der Bl{\"a}tter untersucht. Unter Ber{\"u}cksichtigung des kurzen Transformations- und damit Beobachtungszeitfensters wurde ein Salzapplikationsverfahren etabliert, bei dem simultan mit der Agrobakterien-infiltration 200 mM NaCl direkt in den Blattapoplasten eingef{\"u}hrt wurde. Anhand einer Zu-nahme in sowohl der Transskriptmenge der V-PPase als auch des PPi-induzierten Protonen-pumptransportes {\"u}ber den Tonoplasten wurde gezeigt, dass die NaCl-Anwesenheit im Blatt eine erh{\"o}hte Aktivit{\"a}t der endogenen V-PPasen des N. benthaminan Pflanzen bewirkte. Der gleichzeitige tendenzielle R{\"u}ckgang der V-ATPase-Pumpaktivit{\"a}t in salzbehandelten Mesophyllvakuolen l{\"a}sst vermuten, dass die V-PPasen eine gr{\"o}ßere Rolle bei der Bewahrung des vakuol{\"a}ren pH-Wertes und der protonenmotorische Kraft (PMF) unter Salzstress ein-nimmt. Interessanterweise f{\"u}hrte die Salzapplikation bei einer V-PPase-{\"U}berexpression zu keinen additiven negativen Effekten, sondern verhinderte sogar das Auftreten der Nekrosen. Um dieses Ph{\"a}nomen zu ergr{\"u}nden, wurde zun{\"a}chst mit Hilfe von Apoplastenwaschungen und Natrium-Konzentrationsmessungen best{\"a}tigt, dass das injizierte NaCl im Blatt verblieb und von den Blattzellen aufgenommen wurde. F{\"u}r weitere Studien der Ursachen der Nekrosen wurden in-vivo-pH-, Membranpotenzial- und Metabolitmessungen durchgef{\"u}hrt. W{\"a}hrend in V-PPase-{\"u}berexprimierenden Zellen der vakuol{\"a}re pH-Wert zu Kontrollvakuolen signifikant sank, blieb er mit zus{\"a}tzlicher Salzbehandlung auf Kontrollniveau. Des Weiteren schw{\"a}chte die Salzapplikation die starke Depolarisation der Plasmamembran nach V-PPase-{\"U}ber-expression um mehr als die H{\"a}lfte ab. Hingegen konnten keine nennenswerten Ver-{\"a}nderungen im Metabolit- und Ionengehalt des Blattgewebes bei V-PPase-{\"U}berexpression festgestellt werden. Lediglich der Natrium- und Chlorid-Spiegel waren bei salz-behandelten Bl{\"a}ttern erwartungsgem{\"a}ß erh{\"o}ht. Diese Ergebnisse bekr{\"a}ftigten, dass der stark erh{\"o}hte V-PPase-vermittelte Protonenpumpstrom und weniger metabolische Ver{\"a}nderungen f{\"u}r die Nekrosen von V-PPase-{\"u}berexprimierte Pflanzen verantwortlich ist. Diese negativen Auswirkungen werden offensichtlich durch die Salzbehandlung stark vermindert, da die Aufnahme der Salz-ionen {\"u}ber Protonen-Na+/K+-Antiporter wie NHX antagonistisch auf die V-PPase verursachte Protonenanreicherung und die daraus folgende Ver{\"a}nderung des Membran-potentials und der PMF entgegenwirkt. In diese Arbeit wurde in einem neuen Blickwinkel deutlich, dass die nat{\"u}rliche Expressions-kontrolle der V-PPase in ausdifferenzierten Pflanzenzellen sich den Umweltbedingungen anpasst, um das Gleich-gewicht zwischen den positiven und negativen Auswirkungen der Pumpaktivit{\"a}t zu halten.}, subject = {Pyrophosphatase}, language = {de} } @phdthesis{FernandezMora2005, author = {Fern{\´a}ndez-Mora, Eugenia}, title = {Analysis of the maturation of Rhodococcus equi-containing vacuoles in macrophages}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14049}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Rhodococcus equi is a Gram-positive intracellular pathogen which can cause severe bronchopneumonia in foals. In recent years, the role of this bacterium as human pathogen has been noted, as R.equi infections in humans have increase in frequency. This increase is associated with the rise in immunosupressed individuals, specially AIDS patients, where infection leads to symptoms and pathology similar to those seen in foals with a high mortality rate. Due to its capability to survive and multiply in murine and equine macrophages, R.equi has been classified as a facultative intracellular bacterium. R.equi is found frequently in macrophages in alveolar infiltrate from infected animals. The pathogenicity of R.equi depends on its ability to exist and multiply inside macrophages and has been associated with the presence of virulence plasmids. It has been observed that, inside foal alveolar macrophages, R.equi-containing vacuoles (RCVs) do not mature into phagolysosomes. However, most of the intracellular events during R.equi infection have not been investigated in detail. The aim of this study was to elucidate the intracellular compartmentation of R.equi and the mechanism by which the bacteria avoid destruction in host macrophages. The importance of the virulence-associated plasmids of R.equi for the establishment of RCVs was also evaluated. Furthermore, the intracellular fate of viable and non-viable R.equi was compared in order to study whether viability of R.equi influeciantes the establishment of RCVs. In this study, the RCV was characterized by using a variety of endocytic markers to follow the path of the bacteria trhough murine macropages. Transmission electron microscopy-base analysis showed that R.equi was found equally frequently in phagosomes with loosely or thightly apposed membranes, and RCV often contains numerous membranous vesicles. Laser scanning microscopy of infected macrophages showed that the majority of phagosomes containing R.equi acquired transiently the early endosomal markers Rab5, Ptlns3P, and EEA-1, suggesting initially undisturbed phagosome maturation. Although the RCV acquired some late endosomal markers, such as Rab7, LAMP-1, and Lamp-2, they did not acquired vATPase, did not interact with pre-labeled lysosomes, and failed to acidify. These data clearly suggest that the RCV is a compartment which has left vacuoles that resemble multivesicular body compartments (MVB), which are transport intermediates between early and late endosomes and display internal vesicles very similar to the ones observed within RCVs. Analyisis of several R.equi strains containing either VapA- or VapB-expressing plasmids or neither demonstrated that the possession of the virulence-associated plasmids does not affect phagosome trafficking over a two hour period of infection. The finding that non-viable R.equi was still able to inhibit phagosome maturation (although not to the same extent as viable R.equi did) suggests that heat-insensitive factors, such as cell periphery lipids, may play a major role in inhibition of phagosome maturation, although heat-sensitive factors may also be involved.}, subject = {Rhodococcus equi}, language = {en} } @phdthesis{Dunkel2008, author = {Dunkel, Marcel}, title = {Untersuchungen zur Translokation und Funktion von Tandem-Poren Kaliumkan{\"a}len der TPK-Familie aus Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-34743}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {• Die Modellpflanze der Pflanzenphysiologen, Arabidopsis thaliana, besitzt mindestens 15 verschiedene kaliumselektive Kan{\"a}le, von denen 5 der Strukturklasse der Tandemporen-Kaliumkan{\"a}le angeh{\"o}ren und daher TPK-Kan{\"a}le genannt werden. • Tandemporenkan{\"a}le findet man nur bei eukaryontischen Organismen. Die pflanzlichen Tandemporen Kaliumkan{\"a}le haben einen gemeinsamen phylogenetischen Ursprung und unterscheiden sich von den Tierischen und denen der Pilze und Einzeller. Die pflanzlichen TPK-Kan{\"a}le lassen sich wiederum in die TPK1-Unterfamilie und die TPK2-Unterfamilie unterteilen. Die weitere Evolution der TPK2-Unterfamilie von A. thaliana, TPK2, TPK3, TPK4 und TPK5, l{\"a}sst sich eindeutig auf bestimmte Duplikationsereignisse im Genom von A. thaliana und dessen Ahnen zur{\"u}ckf{\"u}hren. Auch der Ein-Poren Kaliumkanal KCO3 geht sehr wahrscheinlich auf die Duplikation des TPK2 und einer anschließenden Deletion und nicht auf einen der prokaryontischen Ein-Poren-Kaliumkanal-Prototypen zur{\"u}ck. • Vier der A. thaliana TPK-Kan{\"a}le (TPK1, 2, 3 und 5) lokalisieren in der Vakuolenmembran, w{\"a}hrend einer, TPK4, zum großen Teil im ER, aber auch in der Plasmamembran zu finden ist. Die Translokation des TPK1 folgt dem sekretorischen Pfad vom ER, durch den Golgi und m{\"o}glichen intermedi{\"a}ren Kompartimenten hin zur Membran der lytischen Vakuole. Von entscheidender Bedeutung ist dabei der zytoplasmatische Carboxy-Terminus (CT) des TPK1. Deletionsmutanten des TPK1 CT zeigen, dass die Translokation mindestens zwei Sortierungsschritten, am Ausgang des ER und des Golgi, unterliegt. Fehlt der CT komplett bleibt der Kanal im ER. Die Sortierungssignale des TPK1 CT konnten auf die EF-Hand Dom{\"a}ne I eingegrenzt werden. Anschließende Punktmutationen in diesem Bereich konnten zeigen, dass TPK1 in der eigentlich f{\"u}r die Ca2+ Bindung zust{\"a}ndigen Dom{\"a}ne ein di-azidisches ER-Export Motiv bestehend aus Asparagins{\"a}ure, Leucin und Glutamins{\"a}ure enth{\"a}lt. Andere Arbeiten legen nahe, dass der Mechanismus des ER-exports von TPK1 auf der Interaktion mit COPII Vesikelh{\"u}llproteinen beruht; TPK1 also in Vesikel sortiert wird, die sich am ER abschn{\"u}ren und mit dem cis-Golgi fusionieren. Der Vergleich mit anderen pflanzlichen TPK Kan{\"a}len l{\"a}sst vermuten, dass TPK1 Orthologe, nicht aber die A. thaliana Homologen ein di-azidisches ER-Exportmotiv besitzen. Die Translokation des TPK3 erwies sich dementsprechend als unabh{\"a}ngig von dessen CT. Weitere Experimente schließen außerdem eine Beteiligung der 14-3-3 Bindung an der Translokation aus. • TPK4 ist der einzige TPK der heterolog in Xenopus Oozyten funktionell exprimiert werden kann. Wie Mutationen an einem essentiellen Aspartat (Asp86, Asp200) in der Pore zeigten, sind beide tandem repetierten Porendom{\"a}nen einer Kanaluntereinheiten an der Porenbildung beteiligt. Somit formt sich TPK4 {\"a}hnlich wie die tierischen TPK-Kan{\"a}le voraussichtlich aus zwei Untereinheiten. Ein Austausch der zweiten Porendom{\"a}ne von TPK4 konnte zeigen, dass TPK2, TPK3 und TPK5, mit ihrer zweiten Porendom{\"a}ne und TPK4 mit seiner ersten Porendom{\"a}ne den TPK4 zu einem funktionellen Kaliumkanal komplementieren k{\"o}nnen. Da keine der TPK4 Eigenschaften, außer geringf{\"u}gig die relative Permeabilit{\"a}t f{\"u}r Rb+, ver{\"a}ndert wurde, kann man absehen, dass die homologen TPK2, TPK3 und TPK5 als instantan aktivierte, spannungsunabh{\"a}ngige Kaliumkan{\"a}le der Vakuolenmembran fungieren. Dazu kommt wahrscheinlich {\"a}hnlich wie bei TPK1 ein 14-3-3 und Ca2+ abh{\"a}ngiges {\"O}ffnen und Schließen. • Weiterf{\"u}hrende elektrophysiologische Untersuchungen am TPK4 zeigten eine Beteiligung einer transmembranen Asparagins{\"a}ure (Asp110) an der Kaliumpermeation und der schwachen Einw{\"a}rtsgleichrichtung. Der Aspartatrest ist in die wassergef{\"u}llte Aussparung der zytoplasmatischen Porenh{\"a}lfte orientiert. Damit kann er {\"u}ber ionische Wechselwirkungen sowohl Kalium in der Pore konzentrieren als auch potentielle Kanalblocker wie Mg2+ oder Polyamine binden. Die Konservierung des Aspartats unter anderem bei TPK2, TPK3 und TPK5 deutet daraufhin, dass auch die vakuol{\"a}ren TPK-Kan{\"a}le eine Einw{\"a}rtsgleichrichtung vermitteln, die auf einem spannungsabh{\"a}ngigen Block von zytoplasmatischer Seite basiert. • Im Gegensatz zum zytoplasmatischen Block ist das Schließen des TPK4 durch zytoplasmatische Ans{\"a}uerung spannungsunabh{\"a}ngig und ist daher von einer Protonierungsreaktion abh{\"a}ngig. {\"U}ber zahlreiche Deletionen und Chim{\"a}ren des TPK4 wurde der Bereich, in dem sich pH-Sensor und pH-Tor befinden, auf den Bereich zwischen transmembranen und zytoplasmatischen Dom{\"a}nen eingegrenzt. Dar{\"u}ber hinaus fungieren Histidine nicht als pH-Sensor.}, subject = {Vakuole}, language = {de} } @phdthesis{Dindas2019, author = {Dindas, Julian}, title = {Cytosolic Ca\(^2\)\(^+\), a master regulator of vacuolar ion conductance and fast auxin signaling in \(Arabidopsis\) \(thaliana\)}, doi = {10.25972/OPUS-15863}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158638}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Das Phytohormon Auxin erf{\"u}llt wichtige Funktionen bei der Initiierung von pflanzlichen Geweben und Organen, wie auch in der Steuerung des Wurzelwachstums im Zusammenspiel mit {\"a}ußeren Reizen wie Schwerkraft, Wasser- und N{\"a}hstoffverf{\"u}gbarkeit. Diese Funktionen basieren dabei vor allem auf der Auxin-abh{\"a}ngigen Regulation von Zellteilung und -streckung. Wichtig f{\"u}r letzteres ist dabei die Kontrolle des Zellturgors durch die Vakuole. Als Speicher f{\"u}r N{\"a}hrstoffe, Metabolite und Toxine sind Vakuolen von essentieller Bedeutung. Vakuol{\"a}r gespeicherte Metabolite und Ionen werden sowohl {\"u}ber aktive Transportprozesse, als auch passiv durch Ionenkan{\"a}le, {\"u}ber die vakuol{\"a}re Membran mit dem Zytoplasma ausgetauscht. In ihrer Funktion als second messenger sind Kalziumionen wichtige Regulatoren, aber auch Gegenstand vakuol{\"a}rer Transportprozesse. {\"A}nderungen der zytosolischen Kalziumkonzentration wirken nicht nur lokal, sie werden auch mit einer Signalweiterleitung {\"u}ber l{\"a}ngere Distanzen in Verbindung gebracht. Im Rahmen dieser Arbeit wurden elektrophysiologische Methoden mit bildgebenden Methoden kombiniert um Einblicke in das Zusammenspiel zwischen zytosolischen Kalziumsignalen, vakuol{\"a}rer Transportprozesse und der Auxin-Physiologie im intakten pflanzlichen Organismus zu gewinnen. Kalziumsignale sind an der Regulierung vakuol{\"a}rer Ionenkan{\"a}le und Transporter beteiligt. Um dies im intakten Organismus zu untersuchen wurden im Modellsystem junger Wurzelhaare von Arabidopsis thaliana Messungen mit intrazellul{\"a}ren Mikroelektroden durchgef{\"u}hrt. Mittels der Zwei-Elektroden-Spannungsklemm-Technik konnte best{\"a}tigt werden, dass die vakuol{\"a}re Membran der limitierende elektrische Wiederstand w{\"a}hrend intravakuol{\"a}rer Messungen ist und so gemessene Ionenstr{\"o}me in der Tat nur die Str{\"o}me {\"u}ber die vakuol{\"a}re Membran repr{\"a}sentieren. Die bereits bekannte zeitabh{\"a}ngige Abnahme der vakuol{\"a}ren Leitf{\"a}higkeit in Einstichexperimenten konnte weiterhin mit einer einstichbedingten, transienten Erh{\"o}hung der zytosolischen Kalziumkonzentration korreliert werden. Durch intravakuol{\"a}re Spannungsklemmexperimente in Wurzelhaarzellen von Kalziumreporterpflanzen konnte dieser Zusammenhang zwischen vakuol{\"a}rer Leitf{\"a}higkeit und der zytosolischen Kalziumkonzentration best{\"a}tigt werden. Die Vakuole ist jedoch nicht nur ein Empf{\"a}nger zytosolischer Kalziumsignale. Da die Vakuole den gr{\"o}ßten intrazellul{\"a}ren Kalziumspeicher darstellt, wird seit Langem diskutiert, ob sie auch an der Erzeugung solcher Signale beteiligt ist. Dies konnte in intakten Wurzelhaarzellen best{\"a}tigt werden. {\"A}nderungen des vakuol{\"a}ren Membranpotentials wirkten sich auf die zytosolische Kalziumkonzentration in diesen Zellen aus. W{\"a}hrend depolarisierende Potentiale zu einer Erh{\"o}hung der zytosolischen Kalziumkonzentration f{\"u}hrten, bewirkte eine Hyperpolarisierung der vakuol{\"a}ren Membran das Gegenteil. Thermodynamische {\"U}berlegungen zum passiven und aktiven Kalziumtransport {\"u}ber die vakuol{\"a}re Membran legten dabei den Schluss nahe, dass die hierin beschriebenen Ergebnisse das Verhalten von vakuol{\"a}ren H+/Ca2+ Austauschern wiederspiegeln, deren Aktivit{\"a}t durch die protonenmotorische Kraft bestimmt wird. Im Rahmen dieser Arbeit stellte sich weiterhin heraus, dass zytosolisches Kalzium ebenso ein zentraler Regulator eines schnellen Auxin-induzierten Signalweges ist, {\"u}ber den der polare Transport des Hormons reguliert wird. Im gleichen Modellsystem junger Wurzelhaare konnte gezeigt werden, dass die externe Applikation von Auxin eine sehr schnelle, Auxinkonzentrations- und pH-abh{\"a}ngige Depolarisation des Plasmamembranpotentials zur Folge hat. Synchron zur Depolarisation des Plasmamembranpotentials wurden im Zytosol transiente Kalziumsignale registriert. Diese wurden durch einen von Auxin aktivierten Einstrom von Kalziumionen durch den Ionenkanal CNGC14 hervorgerufen. Experimente an Verlustmutanten als auch pharmakologische Experimente zeigten, dass zur Auxin-induzierten Aktivierung des Kalziumkanals die Auxin-Perzeption durch die F-box Proteine der TIR1/AFB Familie erforderlich ist. Durch Untersuchungen der Auxin-abh{\"a}ngigen Depolarisation wie auch des Auxin-induzierten Einstroms von Protonen in epidermale Wurzelzellen von Verlustmutanten konnte gezeigt werden, dass die sekund{\"a}r aktive Aufnahme von Auxin durch das hochaffine Transportprotein AUX1 f{\"u}r die schnelle Depolarisation verantwortlich ist. Nicht nur die zytosolischen Kalziumsignale korrelierten mit der CNGC14 Funktion, sondern ebenso die AUX1-vermittelte Depolarisation von Wurzelhaaren. Eine unver{\"a}nderte Expression von AUX1 in der cngc14 Verlustmutante legte dabei den Schluss nahe, dass die Aktivit{\"a}t von AUX1 posttranslational reguliert werden muss. Diese Hypothese erfuhr Unterst{\"u}tzung durch Experimente, in denen die Behandlung mit dem Kalziumkanalblocker Lanthan zu einer Inaktivierung von AUX1 im Wildtyp f{\"u}hrte. Die zytosolische Beladung einzelner epidermaler Wurzelzellen mit Auxin hatte die Ausbreitung lateraler und acropetaler Kalziumwellen zur Folge. Diese korrelierten mit einer Verschiebung des Auxin-Gradienten an der Wurzelspitze und unterst{\"u}tzten somit eine hypothetische Kalziumabh{\"a}ngige Regulation des polaren Auxin Transports. Ein Model f{\"u}r einen schnellen, Auxin induzierten und kalziumabh{\"a}ngigen Signalweg wird pr{\"a}sentiert und dessen Bedeutung f{\"u}r das gravitrope Wurzelwachstum diskutiert. Da die AUX1-vermittelte Depolarisation in Abh{\"a}ngigkeit von der externen Phosphatkonzentration variierte, wird die Bedeutung dieses schnellen Signalwegs ebenso f{\"u}r die Anpassung des Wurzelhaarwachstums an eine nicht ausreichende Verf{\"u}gbarkeit von Phosphat diskutiert.}, subject = {Ackerschmalwand}, language = {en} }