@article{JesaitisKlotz1993, author = {Jesaitis, A. J. and Klotz, Karl-Norbert}, title = {Cytoskeletal regulation of chemotactic receptors: Molecular complexation of N-formyl peptide receptors with G proteins and actin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79673}, year = {1993}, abstract = {Signal transduction via receptors for N-formylmethionyl peptide chemoattractants (FPR) on human neutrophils is a highly regulated process. It involves direct interaction of receptors with heterotrimeric G-proteins and may be under thc control of cytoskeletal clemcnts. Evidencc exists suggesting that thc cytoskeleton and/or the membrane ske1eton determines the distribution of FPR in the plane of the plasma membrane, thus controlling FPR accessibility to different protcins in functionally distinct membrane domains. In desensitized cells, FPR are restricted to domains which are depleted of G proteins but enriched in cytoskeletal proteins such as actin and fodrin. Thus, the G protein signal transduction partners of FPR become inacccssible to the agonist-occupied receptor, preventing cell activation. We are investigating the molecular basis for the interaction of FPR with the membrane skeleton, and our results suggest that FPR, and possibly other receptors, may directly bind to cytoskeletal proteins such as actin.}, subject = {Immunologie}, language = {en} } @article{HuppFoertschWippeletal.2013, author = {Hupp, Sabrina and F{\"o}rtsch, Christina and Wippel, Carolin and Ma, Jiangtao and Mitchell, Timothy J. and Iliev, Asparouh I.}, title = {Direct Transmembrane Interaction between Actin and the Pore-Competent, Cholesterol-Dependent Cytolysin Pneumolysin}, series = {Journal of Molecular Biology}, volume = {425}, journal = {Journal of Molecular Biology}, number = {3}, doi = {10.1016/j.jmb.2012.11.034}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132297}, pages = {636-646}, year = {2013}, abstract = {The eukaryotic actin cytoskeleton is an evolutionarily well-established pathogen target, as a large number of bacterial factors disturb its dynamics to alter the function of the host cells. These pathogenic factors modulate or mimic actin effector proteins or they modify actin directly, leading to an imbalance of the precisely regulated actin turnover. Here, we show that the pore-forming, cholesterol-dependent cytolysin pneumolysin (PLY), a major neurotoxin of Streptococcus pneumoniae, has the capacity to bind actin directly and to enhance actin polymerisation in vitro. In cells, the toxin co-localised with F-actin shortly after exposure, and this direct interaction was verified by F{\"o}rster resonance energy transfer. PLY was capable of exerting its effect on actin through the lipid bilayer of giant unilamellar vesicles, but only when its pore competence was preserved. The dissociation constant of G-actin binding to PLY in a biochemical environment was 170-190 nM, which is indicative of a high-affinity interaction, comparable to the affinity of other intracellular actin-binding factors. Our results demonstrate the first example of a direct interaction of a pore-forming toxin with cytoskeletal components, suggesting that the cross talk between pore-forming cytolysins and cells is more complex than previously thought.}, language = {en} }