@article{CaviezelLutzMininietal.1984, author = {Caviezel, M. and Lutz, Werner K. and Minini, U. and Schlatter, C.}, title = {Interaction of estrone and estradiol with DNA and protein of liver and kidney in rat and hamster in vivo and in vitro}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60995}, year = {1984}, abstract = {(6,7-\(^3\)H] Estrone (E) and [6,7-\(^3\)H]estradiol-17ß (E\(_2\)) have been synthesized by reduction of 6-dehydroestrone and 6-dehydroestradiol with tritium gas. Tritiated E and E\(_2\) were administered by oral gavage to female rats and to male and female hamsters on a dose level of about 300 \(\mu\)g/kg (54 mCi/kg). After 8 h, the liver was excised from the rats; liver and kidneys were taken from the hamsters. DNA was purified either directly from an organ homogenate or via chromatin. The radioactivity in the DNA was expressed in the units of the Covalent Binding Index, CBI = (\(\mu\)mol chemical bound per mol Similar considerations can be made for the liver where any true covalent DNA binding must be below a Ievel of 0.01. It is concluded that an observable tumor induction by estrone or estradiol is unlikely to be due to DNA binding. DNA-P)/(mmol chemical administered per kg b.w.). Rat liver DNA isolated via chromatin exhibited the very low values of 0.08 and 0.09 for E and E\(_2\) respectively. The respective figures in hamster liver were 0.08 and 0.11 in females and 0.21 and 0.18 in the males. DNA isolated from the kidney revealed a detectable radioactivity only in the female, with values of 0.03 and 0.05 for E and E\(_2\) respectively. The values for male hamster kidney were < 0.01 for both hormones. The minute radioactivity detectable in the DNA samples does not represent covalent binding to DNA, however, as indicated by' two sets of control experiments. (A) Analysis by HPLC of the nucleosides prepared by enzyme digest of liver DNA isolated directly or via chromatin did not reveal any consistent peak which could have been attributed to a nucleoside-steroid adduct. (B) All DNA radioactivity could be due to protein contaminations, because the specific activity of chromatin protein was determined to be more than 3 ,000 tim es high er than of DNA. The high affinity of the hormone to protein was also demonstrated by in vitro incubations, where it could be shown that the specific activity of DNA and protein was essentially proportional to the concentration of radiolabelled hormone in the organ homogenate, regardless of whether the animal was treated or whether the hormone was added in vitro to the homogenate. Carcinogens acting by covalent DNA binding can be classified according to potency on the basis of the Covalent Binding Index. Values of 10\(^3\)-10\(^4\) have been found for potent, 10\(^2\) for moderate, and 1-10 for weak carcinogens. Since estrone is moderately carcinogenic for the kidney of the male hamster, a CBI of about 100 would be expected. The actually measured Iimit of detection of 0.01 places covalent DNA binding among the highly unlikely mechanisms of action.}, subject = {Toxikologie}, language = {en} } @article{CantoreggiLutz1992, author = {Cantoreggi, S. and Lutz, Werner K.}, title = {Investigation of the covalent binding of styrene-7,8-oxide to DNA in rat and mouse}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60721}, year = {1992}, abstract = {Styrene-7,8-oxide (SO), the main intennediate metabolite of styrene, induces hyperkeratosis and tumors in the forestomach of rats and mice upon chronic administration by gavage. The aim of this study was to investigate wbether DNA binding could be responsible for the carcinogenic effect observed. [7-\(^3\)H]SO was administered by oral gavage in com oll to male CD rats at two dose levels (1.65 or 240 mg/kg). After 4 or 24 h, forestomach, glandular stomach and Uver were exclsed, DNA was isolated and its radioactivity detennined. At the 4 h time polnt, the DNA radioactivity was below the Iimit of detection in the torestornach and the liver. Expressed in the units of the covalent bindlng Index, CBI = (pmol adduct/mol DNA nucleotide)/(mmol cbemical administeredlkg body wt), the DNA-binding potency was below 2.6 and 2.0 respectively. In the glandular stomach at 4 b, and in most 24 b samples, DNA was slightly radiolabeled. Enzymatic degradation of the DNA and separation by HPLC ofthe normal nucleotides sbowed that the DNA rad.ioactivity represented biosynthetic incorporation of radlolabel into newly synthesized DNA. The Iimit of detection of DNA adducts in the glandular stomach was 1.0. In a second experlment, [7-\(^3\)H]SO was administered by i.p. injection to male 86C3Fl rnice. Liver DNA was analyzed after 2 h. No radloactivity was detectable at a Iimit of detection of CBI < 0.6. In agreement with the relatively long half-life of SO in animals, the cbemical reactivity of SO appears to be too low to result in a detectable production of DNA adducts in an in vivo situation. Upon comparison with the DNA-binding of other carcinogens, a purely genotoxic mechanism of tumorigenJc action of SO is unlikely. The observed tumorigenic potency in the forestomach could be the result of strong tumor promotion by high-dose cytotoxicity foUowed by regenerative hyperplasia.}, subject = {Toxikologie}, language = {en} } @article{DaenikenLutzJaeckhetal.1984, author = {D{\"a}niken, A. von and Lutz, Werner K. and J{\"a}ckh, R. and Schlatter, C.}, title = {Investigation of the potential for binding of Di(2-ethylhexyl) phthalate (DEHP) and Di(2-ethylhexyl) adipate (DEHA) to liver DNA in vivo}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61004}, year = {1984}, abstract = {Investigation of the Potential for Binding of Di(2-ethylhexyl) Phthalate (DEHP) and Di(2- ethylhexyl) Adipate (DEHA) to Liver DNA in Vivo. VON D{\"A}NIKEN, A., LUTZ, W. K., J{\"A}CKH, R., AND ScHLATTER, C. (1984). Toxico/. App/. Pharmaco/. 73, 373-387. It was the aim oftbis investigation to determine whether covalent binding of di(2-ethylhexyl) phthalate (DEHP) to rat liver DNA and of di(2-ethylhexyl) adipate (DEHA) to mouse liver DNA could be a mechanism of action contributing to the observed induction of liver tumors after lifetime feeding of the respective rodent species with high doses of DEHP and DEHA. For this purpose, DEHP and DEHA radiolabeled in different parts of the molecule were administered orally to female rats and mice, respectively, with or witbout pretreatment for 4 weeks with 1\% unlabeled compound in the diet. Liver DNA was isolated after 16 hr and analyzed for radioactivity. The data were converted to a covalent binding index, CBI = (micromoles of substance bound per mole of DNA nucleotides)/(millimoles of substance applied per kilogram body weight), in order to allow a quantitative comparison also with other carcinogens and noncarcinogens. Administration of [\(^{14}\)H]carboxylate-labeled DEHP to rats resulted in no measurable DNA radioactivity. The Iimit of detection, CBI < 0.02 was about 100 times below the CBI of compounds where an observable tumor-inducing potential could be due to genotoxicity. With [\(^{14}\)C]- and [\(^{3}\)H]DEHP labeled in the alcohol moiety, radioactivity was clearly measurable in rat liver DNA. HPLC analysis of enzyme-degraded or acid-hydrolyzed DNA revealed that the natural nucleosides or purine bases were radiolabeled whereas no radioactivity was detectable in those fractions where tbe carcinogenmodified nucleoside or base adducts are expected. The respective Iimits of detection were at 0.07 and 0.04 CBI units for the \(^{14}\)C and \(^{3}\)H Iabels, respectively. The experiments with [\(^{14}\)C]- and [\(^{3}\)H]DEHA, labeled in the alcobol moiety and administered to mice, revealed aminute radioactivity of <50 dpm/mg liver DNA, too little to allow a nucleoside analysis to determine that fraction of the radioactivity which bad been incorporated via biosynthesis. Expressed in the CBI units, values of 0.05 to 0.15 for \(^{14}\)C and 0.01 to 0.12 for \(^{3}\)H resulted. Determination of the level· of \(^{14}\)C02 expiration revealed a linear correlation with the speciftc activity of DNA. Experiments with 2-ethyl[ 1-\(^{14}\)C]hexanol perfonned with both rats and mice allowed the conclusion tbat most if not all DEHA radioactivity in mouse liver DNA was due to biosynthetic incorporation. A maximum possible true DNA binding by DEHA must be below CBI 0.01. Pretreatment of the animals witb unlabeled compound bad no effect on the DNA radioactivities in either species. The present negative data, in conjunction witb other negative short-term tests for mutagenicity, strongly indicate that covalent interaction with DNA is highly unlikely to be the mode of tumorigenic action of DEHP and DEHA in rodents.}, subject = {Toxikologie}, language = {en} } @article{Lutz1986, author = {Lutz, Werner K.}, title = {Investigation of the potential for binding of di(2-ethylhexyl)phthalate (DEHP) to rat liver DNA in vivo}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60957}, year = {1986}, abstract = {It was the aim of this investigation to determine whether or not covalent binding of di(2-ethylhexyl) phthalate (DEHP) to rat liver DNA could be a mechanism of action contributing to the observed induction of liver tumors after lifetime feeding of rodents with high doses of DEHP. DEHP radiolabeled in different positionswas administered orally to female F344 rats with or without pretreatment for 4 weeks with 1\% unlabeled DEHP in the diet. Livu DNA was isolated after 16 hr and analyzed for radioattivity. Administration of [\(^{14}\)C]carboxylate unabeled DEHP resulted in no measurable DNA radioactivity. With DEHP [\(^{14}\)C]· and [\(^{3}\)H]. labeled in the alcohol moiety as well as with 2-ethyl[1-\(^{14}\)C]hexanol, radioactivity was clearly measurable in the DNA. HPLC analysis of enzyme-degraded DNA relvealed that the normal nucleosides had incorporated radiolabel whereas no radioactivity was detectable in those fractions where the carcinogen-modified nucleoside adducts are expected. A quantitative evaluation of the negative data in terms of a Iimit of detection for a covalent binding Index (CBJ) indicates that covalent interaction with DNA is highly unlikely to be the mode of tumorigenic action of DEHP in rodents.}, subject = {Toxikologie}, language = {en} } @article{BoeschFriederichLutzetal.1987, author = {B{\"o}sch, R. and Friederich, U. and Lutz, Werner K. and Brocker, E. and Bachmann, M. and Schlatter, C.}, title = {Investigations on DNA binding in rat liver and in Salmonella and on mutagenicity in the Ames test by emodin, a natural anthraquinone}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60913}, year = {1987}, abstract = {Emodin (1,6,8-trihydroxy-3-methylanthraquinone), an important aglycone found in natural anthraquinone glycosides frequently used in Iaxative drugs, was mutagenic in the Salmonellajmammalian microsome assay (Ames test) with a specificity for strain TA1537. The mutagenic activity was activationdependent with an optimal amount of S9 from Aroclor 1254-treated male Sprague-Dawley rats of 20\% in the S9 mix (v jv) for 10 p.g emodin per plate. Heat inactivation of the S9 for 30 min at 60 ° C prevented mutagenicity. The addition of the cytochrome P-448 inhibitor 7,8-benzoflavone (18.5 nmoles per plate) reduced the mutagenic activity of 5.0 p.g emodin per plate to about one third, whereas the P-450 inhibitor metyrapone (up to 1850 nmoles per plate) was without effect. To test whether a metabolite" binds covalently to Salmonella DNA, [10-\(^{14}\)C]emodin was radiosynthesized, large batches of bacteria were incubated with [10-\(^{14}\)C]emodin and DNA was isolated. [G- \(^{3}\)H]Aflatoxin B1 (AFB1) was used as a positive control mutagen known to act via DNA binding. DNA obtained after aflatoxin treatment could be purified to constant specific activity. With emodin, the specific activity of DNA did not remain constant after repeated precipitations so that it is unlikely that the mutagenicity of emodin is due to covalent interaction of a metabolite with DNA. The antioxidants vitamin C and E or glutathione did not reduce the mutagenicity. Emodin was also negative with strain TA102. Thus, oxygen radicals are probably not involved. When emodin was incubated with S9 alone for up to 50 h before heat-inactivation of the enzymes and addition of bacteria, the mutagenic activity did not decrease. It is concluded that the mutagenicity of emodin is due to a chemically stable, oxidized metabolite forming physico-chemical associations with DNA, possibly of the intercalative type. In order to check whether an intact mammalian organism might be able to activate emodin to a DNA-binding metabolite, radiolabelled emodin was administered by oral gavage to male SD rats and liver DNA was isolated after 72 h. Very little radioactivity was associated with the DNA. Considering that DNA radioactivity could also be due to sources other than covalent interactions, an upper limit for the · covalent binding index, CBI = (p.moles chemical bound per moles DNA nucleotides)/(mmoles chemical administered per kg body weight) of 0.5 is deduced. This is 104 times below the CBI of AFB1. The demonstration of a lack of covalent interaction with DNA bothin Salmonellaandin rat liver is discussed in terms of a reduced hazard posed by emodin as a mutagenic drug in use in humans.}, subject = {Toxikologie}, language = {en} } @article{DaenikenLutzSchlatter1981, author = {D{\"a}niken, A. von and Lutz, Werner K. and Schlatter, C.}, title = {Lack of covalent binding to rat liver DNA of the hypolipidemic drugs clofibrate and fenofibrate}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61087}, year = {1981}, abstract = {\(^{14}\)C-Labelled clofibric acid and fenofibric acid were administered p.o. to 200 g male and female rats. After 10 h, liver nuclear DNA and protein were isolated and the radioactivity was determined. Binding to protein was clearly measurable whereas no binding to DNA could be detected from any drug. A comparison of the Iimit of detection of such DNA binding with well-known chemical carcinogens revealed that the known hepatocarcinogenicity of clofibrate cannot be based upon an initiating, DNA damaging, mode of action but must be due to other, nongenotoxic, mechanisms such as peroxisome proliferation, hepatomegaly, or cytotoxicity due to protein binding. The risk assessment in man and the interpretation of the carcinogenicity data for rodents are discussed.}, subject = {Toxikologie}, language = {en} } @article{BussCaviezelLutz1990, author = {Buss, P. and Caviezel, M. and Lutz, Werner K.}, title = {Linear dose-response relationship for DNA adducts in rat liver from chronic exposure to aflatoxin B1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60779}, year = {1990}, abstract = {Male F-344 rats were given eH]aßatoxin B1 (AFB1) in the drinking water at three exposure Ievels (0.02, 0.6, 20 J,Lgll, resulting in average dose Ievels of 2.2, 73, 2110 nglkg per day). After 4, 6 and 8 weeks, DNA was ~ted frorn the livers and analyzed for aßatoxin-DNA adducts. Tbe Ievel of DNA adducts did not increase significantly after 4 weeks, indicating that a steady-state for adduct formation and removal had nearly been reached. At 8 weeks, the adduct Ievels were 0.91, 32 and 850 nucleotide-aßatoxin adducts per to' nucleotides, i.e. clearly proportional to the dose. At the high dose Ievel, a near SO\% tumor incidence would be expected in a 2-year bioassay with F -344 rats while the low dose used is within the range of estlmated human dietary exposures to aßatoxin in W estem countries. The proportionality seen between exposure and steady-state DNA adduct Ievel is discussed with respect to a linear extrapolation of the tumor risk to low dose.}, subject = {Toxikologie}, language = {en} } @article{LutzSchlatter1977, author = {Lutz, Werner K. and Schlatter, C.}, title = {Mechanism of the carcinogenic action of benzene: irreversible binding to rat liver DNA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61208}, year = {1977}, abstract = {No abstract available}, subject = {Toxikologie}, language = {en} } @article{JauchLutz1986, author = {Jauch, A. and Lutz, Werner K.}, title = {Metallothionein protein variants generated in rat liver as a result of DNA and RNA ethylations by the carcinogen diethylnitrosamine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60946}, year = {1986}, abstract = {Metallothionein (MT) is a protein which contains 20 cysteine residues but no aromatic amino acids. It was tested whether treatment of male rats with the hepatocarcinogen diethylnitrosamine (DENA) could ethylate nucleic acids in such a way that protein variants containing measurable amounts of aromatic amino acid residues could be isolated from the livers of treated animals. To give a low Iimit of detection, the "wrong" amino acid precursors were administered in radiolabelled form at high Ievels of activity (7 mCi/kg each of [\(^3\)H]tyrosine and [\(^3\)H]phenylalanine). 11 \(\mu\)Ci/kg [\(^{14}\)C]cysteine was given as an intemal marker for MT biosynthesis. 6 h after amino acid administration, metallothionein (MT) was isolated from the liver and extensively purified. Afteracid hydrolysis and collection of Cys, Tyr, and Phe from an HPLC analysis of the amino acids, the \(^3\)H/\(^{14}\)C ratio was determined. The carcinogen-treated rats exhibited a significantly higher ratio than the vehicle-treated animals. This type of in vivo assay might find interesting applications in the investigation of nucleic acid alkylations as promutagenic lesions.}, subject = {Toxikologie}, language = {en} } @article{HuberLutz1984, author = {Huber, K. W. and Lutz, Werner K.}, title = {Methylation of DNA by incubation with methylamine and nitrite}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61011}, year = {1984}, abstract = {DNA was incubated in septum-closed reaction vials with [\(^{14}\)C]methylamine and nitrite. The DNA was purified, hydrolysed with hydrochloric acid, and the purines were analysed by h.p.l.c. 7-Methylguanine was detectable as a result of DN A methylation in experiments perfonned in 100 mM acetate at pH 4. Using different concentrations of amine and nitrite a first order reaction for total amine and a second order for total nilrite could be shown. A study on the pH dependence using 100 mM malonate buffer, pH 2.0-6.0, revealed a maximum rate at pH 3.5, with steep slopes above and below this pH value, in agreement with a mathematical analysis of the reaction equations. The data show that the alkylating agent fonned spontaneously by nitrosation and deamination of a primary amine has a long enough lifetime to react with DNA in vitro. Using the reactioil orders established here, an extrapolation to lower concentrations found in the stomach can now be perfonned. Future in vivo experiments on the methylation of gastro-intestinal DNA then would show to what extent DNA in a cell is protected from alkylation.}, subject = {Toxikologie}, language = {en} } @article{HuberLutz1984, author = {Huber, K. W. and Lutz, Werner K.}, title = {Methylation of DNA in stomach and small intestine of rats after oral administration of methylamine and nitrite}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60984}, year = {1984}, abstract = {Young adult male Sprague-Dawley rats were given 30 \(\mu\)mol/kg body weight [\(^{14}\)C]methylamine hydrochloride and 700 \(\mu\)mol/ kg body weight sodium nilrite by oral gavage. DNA isolated from the stomach and from the first 15 cm of the smaß intestine was methylated, containing 7-methylguanine (7mG) at a level of one 7mG molecule per 5x10\8^6\) and lx10\(^7\) nucleotides, respectively. No 7mG was found fn the liver at a limit of detection of one 7mG molecule per 2xl0\(^8\) nucleotides. ln a second experiment, the excised stomachs were incubated with deoxyribonuclease before the isolation of the DNA in order to degrade DNA in the Iumen and in the uppermost lining cells. This treatment resulted in a 30\% decrease in the yield of DNA and a 90\% reduction in the level of 7mG formation. The results show that nitrosation of a primary alkylamine yields a precursor of an alkylating agent which has a long enough lifetime to diffuse towards and react with intracellular DNA. A correlation of DNA methylation in the stomach with the corresponding tumor formation by the methylating carcinogen N-methyi-N'-nitro-N-nitroso-guanidine was used to estimate the roJe of DNA damage resulting from endogenous nitrosation of dietary methylamine in man. It was concluded that the risk resulting from this single amine must be negligible bot that a similar evaluation of other primary amines is required before the over-aU role of primary amine nitrosation in the etiology of human gastric cancer can be assessed.}, subject = {Toxikologie}, language = {en} } @article{MeierBratschiLutzSchlatter1983, author = {Meier-Bratschi, A. and Lutz, Werner K. and Schlatter, C.}, title = {Methylation of liver DNA of rat and mouse by N-nitrosodimethylamine formed in vivo from dimethylamine and nitrite}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61052}, year = {1983}, abstract = {The extent of formation of N-nitrosodimethylaminc {NDMA) in the stomachs of rats and mice after sirnultancous oral administration of [\(^{14}\)C]dimethylamine and potassium nitrite was determined by measuring the methylation of liver DNA. With doses of around 1 mg dimethylamine hydrochloride/ kg body weight and 50 mg potassium nitrite/kg body weight. 0,8 \% of the amine was nitrosated on average. The individual fluctuations ranged from 0.2 to 1.30\% in the rat and from 0.2 to 1.9\% in the mouse. Simultaneous administration of 50 mg sodium ascorbate (vitamin Cl/kg body weight inhibited the nitrosation by ahout 80\% while 50 mg \(\alpha\)-tocopherol acetate [Vitamin E)/kg body weight reduced the nitrosation by about a half. Assuming similar kinctics and conditions of nitrosation in rats and man. a comparison of the formation of NDMA in vivo from dietary dimethylamine and nitrite with the estimated human uptake of preformed N DMA revealed that in vitro formation in the stomach of man is probably negligible.}, subject = {Toxikologie}, language = {en} } @article{LutzFruehSimon1971, author = {Lutz, Werner K. and Fr{\"u}h, P. U. and Simon, W.}, title = {Microcalorimetric determination of ΔH0, ΔG0 and ΔS0 for the interaction of the carrier antibiotics nigericin and monensin with sodium and potassium ions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61218}, year = {1971}, abstract = {The thermodynainic parameters ΔH0, ΔG0 and ΔS0 - and thereby the equilibrium constants - for the complexation of the carrier antibiotics nigericin and monensin with sodium and potassium ions in methanol at 25°C have been determined by microcalorimetry. Tbc results are discussed in terms of the nature of the interaction between ligands and cations.}, subject = {Toxikologie}, language = {en} } @incollection{ShephardSchlatterLutz1987, author = {Shephard, S. E. and Schlatter, C. and Lutz, Werner K.}, title = {Model risk analysis of nitrosatable compounds in the diet as precursors of potential endogenous carcinogens}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86188}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1987}, abstract = {The potential health risk posed by the endogenous formation of N-nitroso compounds (NOC) from nitrosation of dietary ureas, guanidines, amides, amino acids and amanes (primary, secondary and aromatic) was estimated according to the model: Risk = ( daily intake of precursor] X (gastric concentration of nitrite ]n X [nitrosatability rate constant] X [cilrcinogenicity of derivative]. The daily intakes ofthese compound classes span five orders ofmagnitude (100 g/day amides, top; 1-10 mg/day secondary amines, ureas, bottom); the nitrosation rate constants span seven orders of magnitude (aryl amines, ureas, top; amides, secondary amines, bottom); and the carcinogenicity estimates span a 10 000-fold range from 'very strong' to 'virtually noncarcinogenic'. The resulting risk estimates likewise span an enormous range (nine orders of magnitude ): dietary ureas and aromatic amines combined with high nitrite concentration could pose as great a risk as the intake of preformed N-nitrosodimethylamine in the diet. In contrast, the risk posed by the in-vivo nitrosation of primary and secondary amines is probably negligible. The risk contributed by amides (including protein), guanidines and primary amino acids is intermediate between these two extremes.}, subject = {Risikoanalyse}, language = {en} } @article{VivianiLutz1978, author = {Viviani, A. and Lutz, Werner K.}, title = {Modulation of the binding of the carcinogen benzo(a)pyrene to rat liver DNA in vivo by selective induction of microsomal and nuclear aryl hydrocarbon hydroxylase activity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61150}, year = {1978}, abstract = {The lnfluence of mlcrosomal and nuclear aryl hydrocarbon hydroxylase (AHH) actlvlty on the covalent blndlng of [G·3H]benzo(a )pyrene to rat llver DNA was evaluated in viWJ. lnductlon of mlcrosomal AHH was obtalned alter phenobarbltal treatment (160\% of control), whlch also lncreased DNA blndlng to 190\%, but left the nuclear actlvlty unchanged. Nuclear AHH was lnduced wlth dleldrln (150\%), and the blndlng was decreased to 75\%, whereaa the mlcrosomal AHH was at control Ievei. The lncreaslng effect of mlcrosomal AHH lnductlon as weil as the decreaslng effect of nuclear AHH lnductlon on the blndlng was shown clearly when the data of the Individual rata were uaed to solve the equatlon Binding = e•(mlcroeomal AHH) + b•(nuclear AHH) + c Multiple linear regresslon analysls wlth the data from 10 anlmala reaulted ln positive valuea for a and c, a negative value for b, and a good multiple correlatlon coefflclent of r = 0.974. Pretreatment wlth 3-methylcholanthrene ln· duced mlcrosomal AHH to 380\% of control and nuclear AHH to 590\% and lncreased the blndlng' to 175,.-o. The blndlng was hlgher than predlcted by the formula found, probably because the lncreaslng lnfluence of lnduced mlcrosomal AHH overahadowed the decreaslng effect of the nuclear AHH. The study ahows clearly that the blndlng of a forelgn compound to DNA in viWJ Ia dependent not only on mlcrosomal enzyme actlvltles but also on nuclear actlvltles even lf the latter are conslderably lower than thoae of mlcrosomes.}, subject = {Toxikologie}, language = {en} } @article{ShephardSengstagLutzetal.1993, author = {Shephard, S. E. and Sengstag, C. and Lutz, Werner K. and Schlatter, C.}, title = {Mutations in liver DNA of lacI transgenic mice (Big Blue) following subchronic exposure to 2-acetylaminofluorene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60683}, year = {1993}, abstract = {2-Acetylaminofluorene (2-AAF) was administered at Ievels of 0, 300 and 600 ppm in the diet for 28 days to female transgenic micc bearing the lacl genein a Iambda vector (Big Blue® mice). The Iambda vector was excised from liver DNA and packaged in vitro into bacteriophage particles which were allowed to infect E. coli bacteria, forming plaques on agar plates. Approximately 10\(^5\) plaques wcre screened per animal for the appearance of a bluc colour, indicative of mutations in the lac/ gcnc which had resulted in an inactive gene product. Background mutation rate was 2.7 x 10\(^{-5}\) (pooled results of two animals, 8 mutant plaques/289 530 plaques). At 300 ppm in the diet, the rate of 3.5 X 10\(^{-5}\)(8/236 300) was not significantly increased over background. At 600 ppm in the dict, the rate increased approximately 3 fold to 7.7 x 10\(^{-5}\) (17 /221240). In comparison to the usual single or 5-day carcinogen exposure regimes, the 4-week exposure protocol allowed the use of much lower dose Ievels 00-1000 fold lower). Overt toxicity could thus be avoided. The daily doses used were somewhat higher than those required in 2-year carcinogenicity studies with 2·AAF.}, subject = {Toxikologie}, language = {en} } @article{MeierShephardLutz1990, author = {Meier, I. and Shephard, S. E. and Lutz, Werner K.}, title = {Nitrosation of aspartic acid, aspartame, and glycine ethylester. Alkylation of 4-(p-nitrobenzyl)pyridine (NBP) in vitro and binding to DNA in the rat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60804}, year = {1990}, abstract = {In a colorimetric assay using 4-( p-nitrobenzyl)pyridine (NBP) as a nucleophilic scavenger of alkylating agents, the nitrosation and alkylation reactions were investigated for a number of amino acids and derivatives. The alkylating activity increased with the square of the nitrite concentration. The nitrosation rate constants for aspartic acid, aspartame, and glycine ethylester ( = precursors C) were 0.08, 1.4 and ~ 0.2, respectively, expressed in terms of the pH-dependent \(k_2\) rate constant of the equation dNOCjdt = \(k_2\) • (C]· [nitrite]\(^2\) • The rates correlated inversely with the basicity of the amino group. The stability of the alkylating activity was astonishingly high, both in acid and at neutral pH. Half-lives of 500, 200, and 30 min were determined for aspartic acid (pH 3.5), aspartame (pH 2.5), and glycine ethylester (pH 2.5). Values of 60, 15, and 2 min; respectively, were found at pH 7. It is concluded that rearrangement of the primary N-nitroso product to the ultimate alkylating agent could be rate-limiting. The potential of nitrosated a-amino acids to bind to DN A in vivo was investigated by oral gavage of radiolabelled glycine ethylester to rats, followed irnmediately by sodium nitrite. DNA was isolated from stomach and liver and analysed for radioactivity and modified nucleotides. No indication of DNA adduct formation was obtained. Based on an estimation of the dose fraction converted from glycine ethylester to the nitroso product under the given experimental conditions, the maximum possible DNA-binding potency of nitroso glycine ethylester is about one order of magnitude below the methylating potency of N-nitrosomethylurea in rat stomach. The apparent discrepancy to the in vitro data could be due to efficient detoxification processes in mammalian cells.}, subject = {Toxikologie}, language = {en} } @article{ShephardLutz1989, author = {Shephard, S. E. and Lutz, Werner K.}, title = {Nitrosation of dietary precursors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70311}, year = {1989}, abstract = {The diet contains a large number of constituents which can be nitrosated in the gastrointestinal tract (especially in the stomach) to potentially carcinogenic nitroso compounds (NOC). The nitrosation of food mixtures has been investigated with a number of assays, such as chemical analysis or detection of alkylating potential, mutagenicity and carcinogenicity. Relatively good information is available on the formation of stable nitrosamines using high nitrite concentrations. Little is known, however, about the formation of chemically unstable NOC at low nitrite concentration and their genotoxicity in target cells. A comparison of the precursor classes, alkylamines, aromatic amines, amino acids, amides and peptides, ureas and guanidines, reveals a vast range, both with respect to daily intake (105-fold) and nitrosation rate (104-fold both for 1st and 2nd order nitrite dependence). A total span of 108 results for the relative yield of NOC in the stomach. The endogenous NOC burden from dietary ureas and aromatic amines may represent as large a hazard as the intake of preformed NOC. Recent evidence also indicates that heterocyclic amines and phenols must be considered and that the half-life of nitrosated a-amino acids can be much longer than that of nitrosated primary alkylamines. In these classes, more information should be collected on dietary concentrations, on the nitrosation under realistic conditions and on the genotoxicity in stomach lining cells. Within a chemical precursor class, a wide range is seen with respect to alkylating potency. It cannot, therefore, be excluded that individual precursors within the top ranking classes might become more important than single preformed NOC. Not considered in the above analysis but probably just as important for a risk evaluation in a population is the knowledge of the nitrosation conditions and target cell susceptibility in individuals.}, subject = {Ern{\"a}hrung}, language = {en} } @article{HegiUlrichSagelsdorffetal.1990, author = {Hegi, M. E. and Ulrich, D. and Sagelsdorff, P. and Richter, C. and Lutz, Werner K.}, title = {No measurable increase in thymidine glycol or 8-hydroxydeoxyguanosine in liver DNA of rats treated with nafenopin or choline-devoid low-methionine diet}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60790}, year = {1990}, abstract = {Male rats were treated for 2 months with 1000 ppm nafenopin in the diet or for 4 or 7 days with a choline-devoid low-methionine diet. DNA was isolated from the livers and analyzed for the presence of cis-thymidine glycol-3'-phosphate (cis-dTGp) by 32P-postlabeling and for the Ievel of 8-hydroxy-deoxyguanosine (8-0H-dG) by electrochemical detection (ECD). In no DNA sample was the Ievel of cis-dTGp above the Iimit of detection of 1 modified thymidine per 106 nucleotides. With 8-0H-dG, a background Ievel of this modification of 20 8-0H-dG per 106 nucleosides was found in liver DNA of control rats, which was not affected by either treatment. It is postulated for thymidine glycol that a potential increase was below the Iimit of detection or was rapidly repaired in vivo and that the steady-state Ievel of endogenous 8-hydroxydeoxyguanosine appears not tobe influenced by the treatments chosen.}, subject = {Toxikologie}, language = {en} } @article{LutzViviantSchlatter1978, author = {Lutz, Werner K. and Viviant, A. and Schlatter, C.}, title = {Nonlinear dose-response relationship for the binding of the carcinogen benzo(a)pyrene to rat liver DNA in vivo}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61179}, year = {1978}, abstract = {Wlth radioactive compound of high specific activity, the binding of carcinogene to DNA can be measured wlth doses that are ineffective ln long-term studies. The binding of tritiated benzo(a )pyrene to liver DNA of adult male rats has been determined 50 hr after a singie l.p. injection of doses between 40 1'9/kg and 4 mg/kg. The doseresponse relationship is linear up to 1 mg/kg, shows a step towards 2 mg/kg, and gives a shallow linear slope above that value. The observed binding ranges from 1.7 to 180 nmoles benzo(a)pyrene per mole DNA phosphate. The nonlinearity could be due to an induction of metabolizing enzymes. The microsomal aryl hydrocarbon hydroxylase activity increases significantly 24 hr after a single dose of 4 mg/kg and 48 hr after doses of 2 and 4 mg/kg, but no induction Ia found with 1 mg/kg. The binding from an equimolar dose is 35 times lower than the one found on mouse skin DNA and 300 times lower than that of N,Ndlmethylnitrosamine in rat liver. A good correlatlon exiats to the respective tumor formation in long-term studles.}, subject = {Toxikologie}, language = {en} }