@phdthesis{Huewe2017, author = {H{\"u}we, Florian}, title = {Electrothermal Investigation on Charge and Heat Transport in the Low-Dimensional Organic Conductor (DCNQI)\(_2\)Cu}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153492}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {This thesis aimed at the coherent investigation of the electrical and thermal transport properties of the low-dimensional organic conductor (DCNQI)2M (DCNQI: dicyanoquinonediimine; M: metallic counterion). These radical anion salts present a promising, new material class for thermoelectric applications and hence, a consistent characterization of the key parameters is required to evaluate and to optimize their performance. For this purpose, a novel experimental measurement setup enabling the determination of the electrical conductivity, the Seebeck coefficient and the thermal conductivity on a single crystalline specimen has been designed and implemented in this work. The novel measurement setup brought to operation within this thesis enabled a thorough investigation of the thermal transport properties in the (DCNQI)2M system. The thermal conductivity of (DCNQI-h8)2Cu at RT was determined to κ=1.73 W m^(-1) K^(-1). By reducing of the copper content in isostructural, crystalline (DMe-DCNQI)2CuxLi1-x alloys, the electrical conductivity has been lowered by one order of magnitude and the correlated changes in the thermal conductivity allowed for a verification of the Wiedemann-Franz (WF) law at RT. A room temperature Lorenz number of L=(2.48±0.45)⋅〖10〗^(-8) WΩK^(-2) was obtained in agreement with the standard Lorenz number L_0=2,44⋅〖10〗^(-8) WΩK^(-2) for 3D bulk metals. This value appears to be significantly reduced upon cooling below RT, even far above the Debye temperature of θ_D≈82 K, below which a breakdown of the WF law is caused by different relaxation times in response to thermal and to electric field perturbations. The experimental data enabled the first consistent evaluation of the thermoelectric performance of (DCNQI)\$_2\$Cu. The RT power factor of 110 μWm^(-1) K^(-2) is comparable to values obtained on PEDOT-based thermoelectric polymers. The RT figure of merit amounts to zT=0.02 which falls short by a factor of ten compared to the best values of zT=0.42 claimed for conducting polymers. It originates from the larger thermal conductivity in the organic crystals of about 1.73 W m^(-1) K^(-1) in (DCNQI)2Cu. Yet, more elaborate studies on the anisotropy of the thermal conductivity in PEDOT polymers assume their figure of merit to be zT=0.15 at most, recently. Therefore, (DCNQI)2Cu can be regarded as thermoelectric material of similar performance to polymer-based ones. Moreover, it represents one of the best organic n-type thermoelectric materials to date and as such, may also become important in hybrid thermoelectrics in combination with conducting polymers. Upon cooling below room temperature, (DCNQI)2Cu reveals its full potential attaining power factors of 50 mW K^(-2) m^(-1) and exceeding values of zT>0.15 below 40 K. These values represent the best thermoelectric performance in this low-temperature regime for organic as well as inorganic compounds and thus, low-dimensional organic conductors might pave the way toward new applications in cryogenic thermoelectrics. Further improvements may be expected from optimizing the charge carrier concentration by taking control over the CT process via the counterion stack of the crystal lattice. The concept has also been demonstrated in this work. Moreover, the thermoelectric performance in the vicinity of the CDW transition in (MeBr-DCNQI)2Cu was found to be increased by a factor of 5. Accordingly, the diversity of electronic ground states accessible in organic conductors provides scope for further improvements. Finally, the prototype of an all-organic thermoelectric generator has been built in combination with the p-type organic metal TTT2I3. While it only converts about 0.02\% of the provided heat into electrical energy, the specific power output per active area attains values of up to 5 mW cm^(-2). This power output, defining the cost-limiting factor in the recovery of waste heat, is three orders of magnitude larger than in conducting polymer devices and as such, unrivaled in organic thermoelectrics. While the thermoelectric key parameters of (DCNQI)2Cu still lack behind conventional thermoelectrics made of e.g. Bi2Te3, the promising performance together with its potential for improvements make this novel material class an interesting candidate for further exploration. Particularly, the low-cost and energy-efficient synthesis routes of organic materials highlight their relevance for technological applications.}, subject = {Radikalanionensalz}, language = {en} } @phdthesis{Reiss1985, author = {Reiss, Harald}, title = {Strahlungstransport in dispersen nicht-transparenten Medien}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66669}, school = {Universit{\"a}t W{\"u}rzburg}, year = {1985}, abstract = {In dieser Habilitationsschrift wird das Gesamtgebiet des W{\"a}rmetransports in dispersen Medien untersucht, kompakt, ohne Anspruch auf Vollst{\"a}ndigkeit, jedoch mit Schwerpunkt auf Strahlungstransport in nicht-transparenten Medien; hier sind es bevorzugt hochpor{\"o}se Substanzen, die aus Festk{\"o}rperteilchen bestehen. Die Ergebnisse lassen sich auf andere disperse nicht-transparente Medien wie dichte Gasatmosph{\"a}ren oder einige Zweiphasengemische {\"u}bertragen, wenn Nicht-Strahlungsanteile und Gesamt-Energieerhaltung korrekt formuliert werden. Die vorliegenden Untersuchungen konzentrieren sich auf station{\"a}re Randbedingungen und Strahlungsquellen. Die Motivation zu dieser Arbeit ist mindestens zweifach: Die Trennung des totalen W{\"a}rmestroms in seine Komponenten, in irgendeinem kontinuierlichen oder dispersen Medium, ist eines der herausfordernden, gleichzeitig schwierigsten physikalischen Probleme bei der Analyse des W{\"a}rmetransports; zum zweiten ist es f{\"u}r die Verringerung von W{\"a}rmeverlusten (z. B. in thermischen Isolierungen) dringend erforderlich, die einzelnen Komponenten der W{\"a}rmeverluststr{\"o}me zu kennen, um sie einzeln zu minimieren (das geht offensichtlich nur, wenn man den totalen W{\"a}rmstrom in seine Komponenten zerlegen kann). Die Trennung kann erfolgreich sein, wenn die optische Dicke des untersuchten Mediums sehr groß ist (das Medium ist dann nicht-transparent). In dieser idealen, in der Energietechnik jedoch h{\"a}ufig auftretenden Situation (und nicht nur dort), liefert das Strahlungsdiffusionsmodell den korrekten Ansatz zur Beschreibung des Strahlungsanteils und dessen Temperaturabh{\"a}ngigkeit. Wegen Energieerhaltung und mit der additiven N{\"a}herung erlaubt dieses Ergebnis umgekehrt die Berechnung auch der Nichtstrahlungsanteile im totalen W{\"a}rmestrom; diese sind demnach alle gleichzeitig in kalorimetrischen Messungen zug{\"a}nglich. Damit wird nachfolgende separate Analyse dieser Komponenten mittels geeigneter theoretischer Modelle m{\"o}glich. Da das Temperaturprofil im Medium alle W{\"a}rmestromkomponenten zum totalen W{\"a}rmestrom miteinander koppelt, ist f{\"u}r diesen Ansatz die Kenntnis der Temperaturabh{\"a}ngigkeit auch aller Nicht-Strahlungsanteile erforderlich. Neben der kalorimetrischen Methode kann die Bestimmung der Extinktion des dispersen Mediums und hiermit des Strahlungstransports auch mittels Spektroskopie sowie Berechnung nach der strengen Mie-Theorie der Lichtstreuung und mit dem Rosseland-Mittelwert vorgenommen werden. Dadurch wird ein Vergleich m{\"o}glich zwischen Ergebnissen, die mittels drei voneinander v{\"o}llig unabh{\"a}ngiger Methoden, n{\"a}mlich kalorimetrisch, spektroskopisch und analytisch/numerisch erzielt wurden. Die Ergebnisse stimmen {\"u}berein, wenn das Medium nicht-transparent ist; dieser Nachweis wird in der vorliegenden Habilitationsschrift gef{\"u}hrt. Im ersten Teil der Habilitationsschrift wird in breit angelegtem Review die Fachliteratur zum Strahlungstransport bis zum Jahr 1985 diskutiert und Methoden zur L{\"o}sung der Strahlungstransportgleichung auch im Fall stark anisotroper Streuung beschrieben. Wegen der Forderung nach Energieerhaltung und mit dem oben genannten Ziel, auch die Nicht-Strahlungskomponenten zu analysieren, muß diese Diskussion die theoretischen Aspekte auch dieser Anteile (hier Gas- und Festk{\"o}rperkontakt-W{\"a}rmetransport) einschließen. Den Schluß des ersten Teils bildet ein Katalog offener Fragen, die im zweiten Teil der Habilitationsschrift angegangen werden. Dort werden mittels experimenteller und analytisch/numerischer Ergebnisse das Strahlungsdiffusionsmodell und seine Anwendbarkeit auf disperse nicht-transparente Medien best{\"a}tigt. Die Analysen sind gerichtet auf reine oder mit Infrarot-Tr{\"u}bungsmitteln dotierte Pulver und Faserpapiere; beide sind leicht zug{\"a}ngliche, wohl-definierte Testsubstanzen disperser Medien. Ein wichtiger Teil dieser Untersuchungen enth{\"a}lt Messungen ihrer W{\"a}rmeleitf{\"a}higkeit unter Vakuum und unter externer mechanischer Druckbelastung. Mit evakuierten, druckbelasteten Faserpapieren wurden W{\"a}rmeleitf{\"a}higkeiten erzielt, die zu den niedrigsten geh{\"o}ren, die bis 1985 an solchen Medien bei hohen Temperaturen gemessen wurden. Weiter sollen optimale Teilchendurchmesser gefunden werden, mit denen das Extinktionsverm{\"o}gen solcher Sch{\"u}ttungen signifikant erh{\"o}ht werden kann. Insbesondere ist eine exotische Vorhersage der Mie-Theorie zu pr{\"u}fen, nach welcher die Extinktion perfekt elektrisch leitender, langer, extrem d{\"u}nner Zylinder (unter 50 nm) um Gr{\"o}ßenordnungen {\"u}ber derjenigen herk{\"o}mmlicher (nichtleitender) Pulver oder Fasern liegt; hierf{\"u}r sind Materialproben herzustellen. In der Habilitationsschrift wird aufgezeigt, welcher Weg f{\"u}r diesen Nachweis beschritten werden muß (wenige Jahre nach Vorlage der Habilitationsschrift wurden Gustav Mies und Milton Kerkers Vorhersagen auf diesem Weg mit feinsten metallisierten Glasfasern und mit Nickelfasern in Ver{\"o}ffentlichungen des Autors gemeinsam mit J. Fricke, M. Arduini-Schuster, H.-P. Ebert, R. Caps, D. B{\"u}ttner und A. Kreh erstmalig best{\"a}tigt).}, subject = {Strahlungstransport}, language = {de} }