@article{KarakStepanenkoAddicoatetal.2022, author = {Karak, Suvendu and Stepanenko, Vladimir and Addicoat, Matthew A. and Keßler, Philipp and Moser, Simon and Beuerle, Florian and W{\"u}rthner, Frank}, title = {A Covalent Organic Framework for Cooperative Water Oxidation}, series = {Journal of the American Chemical Society}, volume = {144}, journal = {Journal of the American Chemical Society}, number = {38}, issn = {0002-7863}, doi = {10.1021/jacs.2c07282}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287591}, pages = {17661-17670}, year = {2022}, abstract = {The future of water-derived hydrogen as the "sustainable energy source" straightaway bets on the success of the sluggish oxygen-generating half-reaction. The endeavor to emulate the natural photosystem II for efficient water oxidation has been extended across the spectrum of organic and inorganic combinations. However, the achievement has so far been restricted to homogeneous catalysts rather than their pristine heterogeneous forms. The poor structural understanding and control over the mechanistic pathway often impede the overall development. Herein, we have synthesized a highly crystalline covalent organic framework (COF) for chemical and photochemical water oxidation. The interpenetrated structure assures the catalyst stability, as the catalyst's performance remains unaltered after several cycles. This COF exhibits the highest ever accomplished catalytic activity for such an organometallic crystalline solid-state material where the rate of oxygen evolution is as high as ∼26,000 μmol L\(^{-1}\) s\(^{-1}\) (second-order rate constant k ≈ 1650 μmol L s\(^{-1}\) g\(^{-2}\)). The catalyst also proves its exceptional activity (k ≈ 1600 μmol L s\(^{-1}\) g\(^{-2}\)) during light-driven water oxidation under very dilute conditions. The cooperative interaction between metal centers in the crystalline network offers 20-30-fold superior activity during chemical as well as photocatalytic water oxidation as compared to its amorphous polymeric counterpart.}, language = {en} } @article{SperlichAuthDyakonov2022, author = {Sperlich, Andreas and Auth, Michael and Dyakonov, Vladimir}, title = {Charge transfer in ternary solar cells employing two fullerene derivatives: where do electrons go?}, series = {Israel Journal of Chemistry}, volume = {62}, journal = {Israel Journal of Chemistry}, number = {7-8}, doi = {10.1002/ijch.202100064}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257506}, year = {2022}, abstract = {Earlier reports demonstrated that ternary organic solar cells (OSC) made of donor polymers (D) blended with different mixtures of fullerene acceptors (A : A) performed very similarly. This finding is surprising, as the corresponding fullerene LUMO levels are slightly different, which might result in decisive differences in the charge transfer step. We investigate ternary OSC (D : A : A) made of the donor polymer P3HT with stoichiometric mixtures of different fullerene derivatives, PC\(_{60}\)BM : PC\(_{70}\)BM and PC\(_{70}\)BM : IC\(_{60}\)BA, respectively. Using quantitative electron paramagnetic resonance (EPR) we can distinguish between positive and negative polarons, localized on the specific molecules. We found that after the initial charge transfer step, the electrons are re-distributed over two nearby acceptors in agreement with their stoichiometry and their relative LUMO energy difference. Remarkably, the measured ΔLUMO differences in fullerene mixtures are reduced by an order of magnitude compared to that of the pristine materials, i. e., below 1 meV for PC\(_{60}\)BM : PC\(_{70}\)BM and (20±5) meV for PC\(_{70}\)BM : IC\(_{60}\)BA. Furthermore, we found that this reduced ΔLUMO explains the shift in open circuit voltage for D : A : A organic solar cells. We attribute these findings to hybridization, leading to an effective fullerene LUMO. Consequently, multi-acceptor blends are indeed a viable option for photodetectors and solar cells, as they combine the best electron acceptor and light absorbing properties.}, language = {en} } @article{VogelRueckertFriedrichetal.2022, author = {Vogel, Patrick and R{\"u}ckert, Martin Andreas and Friedrich, Bernhard and Tietze, Rainer and Lyer, Stefan and Kampf, Thomas and Hennig, Thomas and D{\"o}lken, Lars and Alexiou, Christoph and Behr, Volker Christian}, title = {Critical Offset Magnetic PArticle SpectroScopy for rapid and highly sensitive medical point-of-care diagnostics}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, doi = {10.1038/s41467-022-34941-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300893}, year = {2022}, abstract = {Magnetic nanoparticles (MNPs) have been adapted for many applications, e.g., bioassays for the detection of biomarkers such as antibodies, by controlled engineering of specific surface properties. Specific measurement of such binding states is of high interest but currently limited to highly sensitive techniques such as ELISA or flow cytometry, which are relatively inflexible, difficult to handle, expensive and time-consuming. Here we report a method named COMPASS (Critical-Offset-Magnetic-Particle-SpectroScopy), which is based on a critical offset magnetic field, enabling sensitive detection to minimal changes in mobility of MNP ensembles, e.g., resulting from SARS-CoV-2 antibodies binding to the S antigen on the surface of functionalized MNPs. With a sensitivity of 0.33 fmole/50 µl (≙7 pM) for SARS-CoV-2-S1 antibodies, measured with a low-cost portable COMPASS device, the proposed technique is competitive with respect to sensitivity while providing flexibility, robustness, and a measurement time of seconds per sample. In addition, initial results with blood serum demonstrate high specificity.}, language = {en} } @article{StuehlerKowalewskiReisetal.2022, author = {St{\"u}hler, R. and Kowalewski, A. and Reis, F. and Jungblut, D. and Dominguez, F. and Scharf, B. and Li, G. and Sch{\"a}fer, J. and Hankiewicz, E. M. and Claessen, R.}, title = {Effective lifting of the topological protection of quantum spin Hall edge states by edge coupling}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, doi = {10.1038/s41467-022-30996-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300886}, year = {2022}, abstract = {The scientific interest in two-dimensional topological insulators (2D TIs) is currently shifting from a more fundamental perspective to the exploration and design of novel functionalities. Key concepts for the use of 2D TIs in spintronics are based on the topological protection and spin-momentum locking of their helical edge states. In this study we present experimental evidence that topological protection can be (partially) lifted by pairwise coupling of 2D TI edges in close proximity. Using direct wave function mapping via scanning tunneling microscopy/spectroscopy (STM/STS) we compare isolated and coupled topological edges in the 2D TI bismuthene. The latter situation is realized by natural lattice line defects and reveals distinct quasi-particle interference (QPI) patterns, identified as electronic Fabry-P{\´e}rot resonator modes. In contrast, free edges show no sign of any single-particle backscattering. These results pave the way for novel device concepts based on active control of topological protection through inter-edge hybridization for, e.g., electronic Fabry-P{\´e}rot interferometry.}, language = {en} } @article{HerzStefanescuLohretal.2022, author = {Herz, Stefan and Stefanescu, Maria R. and Lohr, David and Vogel, Patrick and Kosmala, Aleksander and Terekhov, Maxim and Weng, Andreas M. and Grunz, Jan-Peter and Bley, Thorsten A. and Schreiber, Laura M.}, title = {Effects of image homogeneity on stenosis visualization at 7 T in a coronary artery phantom study: With and without B1-shimming and parallel transmission}, series = {PloS One}, volume = {17}, journal = {PloS One}, number = {6}, doi = {10.1371/journal.pone.0270689}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300129}, year = {2022}, abstract = {Background To investigate the effects of B\(_1\)-shimming and radiofrequency (RF) parallel transmission (pTX) on the visualization and quantification of the degree of stenosis in a coronary artery phantom using 7 Tesla (7 T) magnetic resonance imaging (MRI). Methods Stenosis phantoms with different grades of stenosis (0\%, 20\%, 40\%, 60\%, 80\%, and 100\%; 5 mm inner vessel diameter) were produced using 3D printing (clear resin). Phantoms were imaged with four different concentrations of diluted Gd-DOTA representing established arterial concentrations after intravenous injection in humans. Samples were centrally positioned in a thorax phantom of 30 cm diameter filled with a custom-made liquid featuring dielectric properties of muscle tissue. MRI was performed on a 7 T whole-body system. 2D-gradient-echo sequences were acquired with an 8-channel transmit 16-channel receive (8 Tx / 16 Rx) cardiac array prototype coil with and without pTX mode. Measurements were compared to those obtained with identical scan parameters using a commercially available 1 Tx / 16 Rx single transmit coil (sTX). To assess reproducibility, measurements (n = 15) were repeated at different horizontal angles with respect to the B0-field. Results B\(_1\)-shimming and pTX markedly improved flip angle homogeneity across the thorax phantom yielding a distinctly increased signal-to-noise ratio (SNR) averaged over a whole slice relative to non-manipulated RF fields. Images without B\(_1\)-shimming showed shading artifacts due to local B\(_1\)\(^+\)-field inhomogeneities, which hampered stenosis quantification in severe cases. In contrast, B\(_1\)-shimming and pTX provided superior image homogeneity. Compared with a conventional sTX coil higher grade stenoses (60\% and 80\%) were graded significantly (p<0.01) more precise. Mild to moderate grade stenoses did not show significant differences. Overall, SNR was distinctly higher with B\(_1\)-shimming and pTX than with the conventional sTX coil (inside the stenosis phantoms 14\%, outside the phantoms 32\%). Both full and half concentration (10.2 mM and 5.1 mM) of a conventional Gd-DOTA dose for humans were equally suitable for stenosis evaluation in this phantom study. Conclusions B\(_1\)-shimming and pTX at 7 T can distinctly improve image homogeneity and therefore provide considerably more accurate MR image analysis, which is beneficial for imaging of small vessel structures.}, language = {en} } @article{WyborskiPodemskiWrońskietal.2022, author = {Wyborski, Paweł and Podemski, Paweł and Wroński, Piotr Andrzej and Jabeen, Fauzia and H{\"o}fling, Sven and Sęk, Grzegorz}, title = {Electronic and optical properties of InAs QDs grown by MBE on InGaAs metamorphic buffer}, series = {Materials}, volume = {15}, journal = {Materials}, number = {3}, issn = {1996-1944}, doi = {10.3390/ma15031071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297037}, year = {2022}, abstract = {We present the optical characterization of GaAs-based InAs quantum dots (QDs) grown by molecular beam epitaxy on a digitally alloyed InGaAs metamorphic buffer layer (MBL) with gradual composition ensuring a redshift of the QD emission up to the second telecom window. Based on the photoluminescence (PL) measurements and numerical calculations, we analyzed the factors influencing the energies of optical transitions in QDs, among which the QD height seems to be dominating. In addition, polarization anisotropy of the QD emission was observed, which is a fingerprint of significant valence states mixing enhanced by the QD confinement potential asymmetry, driven by the decreased strain with increasing In content in the MBL. The barrier-related transitions were probed by photoreflectance, which combined with photoluminescence data and the PL temperature dependence, allowed for the determination of the carrier activation energies and the main channels of carrier loss, identified as the carrier escape to the MBL barrier. Eventually, the zero-dimensional character of the emission was confirmed by detecting the photoluminescence from single QDs with identified features of the confined neutral exciton and biexciton complexes via the excitation power and polarization dependences.}, language = {en} } @phdthesis{Fijalkowski2022, author = {Fijalkowski, Kajetan Maciej}, title = {Electronic Transport in a Magnetic Topological Insulator (V,Bi,Sb)\(_2\)Te\(_3\)}, doi = {10.25972/OPUS-28230}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282303}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This thesis focuses on investigating magneto-transport properties of a ferromagnetic topological insulator (V,Bi,Sb)2Te3. This material is most famously known for exhibiting the quantum anomalous Hall effect, a novel quantum state of matter that has opened up possibilities for potential applications in quantum metrology as a quantum standard of resistance, as well as for academic investigations into unusual magnetic properties and axion electrodynamics. All of those aspects are investigated in the thesis.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Wiest2022, author = {Wiest, Wolfram}, title = {Entwicklung einer Apparatur zur In-situ-Erm{\"u}dungspr{\"u}fung von Zahnimplantaten mittels Synchrotron Micro-CT}, doi = {10.25972/OPUS-25770}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257702}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der volumenbildgebenden Untersuchung von mechanischen Erm{\"u}dungsprozessen in Titan-Zahnimplantaten. Im Vordergrund steht die Entwicklung einer neuen Messmethode der In-situ-Mikrotomografie am Synchrotron. Zahnimplantate werden beim Gebrauch mechanisch wiederholt belastet (Wechsellast). Nach vielen zyklischen Belastungen k{\"o}nnen aufgrund von mikroplastische Verformungen Erm{\"u}dungssch{\"a}den auftreten. Diese k{\"o}nnen im Extremfall zum Versagen und Verlust eines Implantats f{\"u}hren. Die Computertomographie ist eine sehr geeignete zerst{\"o}rungsfrei Pr{\"u}fmethode, um Zahnimplantate zu untersuchen. Diese Arbeit erweitert die bisherige CT-Methode insofern, dass In-situ-Beobachtungen bei mechanischer Belastung m{\"o}glich sind. Die in dieser Arbeit untersuchten Zahnimplantate weisen an der Implantat-Abutment-Grenzfl{\"a}che bei eintretender Erm{\"u}dung einen Mikrospalt auf. Dieser wird als Indikator f{\"u}r einsetzende Fatigue- Prozesse benutzt. Der in der Synchrotron CT verf{\"u}gbare Inlinephasenkontrast erm{\"o}glicht eine verbesserte Bestimmung der Mikrospaltgr{\"o}ße. Da die schnellen Bewegungen der Erm{\"u}dungspr{\"u}fung mittels Standard-CT-Verfahren schwer zu erfassen sind, war die stroboskopische Aufnahmemethode das zielf{\"u}hrende Messverfahren, um in-situ-Pr{\"u}fung zu erm{\"o}glichen. Die 4 kommerziellen Zahnimplantattypen werden neben der In-situ-Fatigue Pr{\"u}fung auch mittels klassischer Erm{\"u}dungspr{\"u}fung untersucht und mit der Neuen Messmethode verglichen. Die hier entwickelte In-situ-Fatigue-Pr{\"u}fstation kann Proben bis zu 345 N tomographisch untersuchen. Neben den experimentellen Untersuchungen wird eine statische FEM-Betrachtung durchgef{\"u}hrt und mit experimentellen Messdaten verglichen. Zuletzt wird mit der entwickelten Messtation Knochenrisse in der Implantat Umgebung untersucht.}, subject = {Mikrocomputertomographie}, language = {de} } @phdthesis{Suchomel2022, author = {Suchomel, Holger Maximilian}, title = {Entwicklung elektrooptischer Bauteile auf der Basis von Exziton-Polaritonen in Halbleiter-Mikroresonatoren}, doi = {10.25972/OPUS-27163}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-271630}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Exziton-Polaritonen (Polaritonen), hybride Quasiteilchen, die durch die starke Kopplung von Quantenfilm-Exzitonen mit Kavit{\"a}tsphotonen entstehen, stellen auf Grund ihrer vielseitigen und kontrollierbaren Eigenschaften einen vielversprechenden Kandidaten f{\"u}r die Entwicklung einer neuen Generation von nichtlinearen und integrierten elektrooptischen Bauteilen dar. Die vorliegende Arbeit besch{\"a}ftigt sich mit der Entwicklung und Untersuchung kompakter elektrooptischer Bauelemente auf der Basis von Exziton-Polaritonen in Halbleitermikrokavit{\"a}ten. Als erstes wird die Implementierung einer elektrisch angeregten, oberfl{\"a}chenemittierenden Polariton-Laserdiode vorgestellt, die ohne ein externes Magnetfeld arbeiten kann. Daf{\"u}r wird der Schichtaufbau, der Q-Faktor, das Dotierprofil und die RabiAufspaltung der Polariton-Laserdiode optimiert. Der Q-Faktor des finalen Aufbaus bel{\"a}uft sich auf Q ~ 16.000, w{\"a}hrend die Rabi-Aufspaltung im Bereich von ~ 11,0 meV liegt. Darauf aufbauend werden Signaturen der Polariton-Kondensation unter elektrischer Anregung, wie ein nichtlinearer Anstieg der Intensit{\"a}t, die Reduktion der Linienbreite und eine fortgesetzte Verschiebung der Emission zu h{\"o}heren Energien oberhalb der ersten Schwelle, demonstriert. Ferner werden die Koh{\"a}renzeigenschaften des Polariton-Kondensats mittels Interferenzspektroskopie untersucht. Basierend auf den optimierten Halbleiter-Mikroresonatoren wird eine Kontaktplattform f{\"u}r die elektrische Anregung ein- und zweidimensionaler Gitterstrukturen entwickelt. Dazu wird die Bandstrukturbildung eines Quadrat- und Graphen-Gitters unter elektrischer Anregung im linearen Regime untersucht und mit den Ergebnissen der optischen Charakterisierung verglichen. Die erhaltenen Dispersionen lassen sich durch das zugeh{\"o}rige Tight-Binding-Modell beschreiben. Ferner wird auch eine elektrisch induzierte Nichtlinearit{\"a}t in der Emission demonstriert. Die untersuchte Laser-Mode liegt auf der H{\"o}he des unteren Flachbandes und an der Position der Γ-Punkte in der zweiten Brillouin-Zone. Die zugeh{\"o}rige Modenstruktur weist die erwartete Kagome-Symmetrie auf. Abschließend wird die Bandstrukturbildung eines SSH-Gitters mit eingebautem Defekt unter elektrischer Anregung untersucht und einige Eigenschaften des topologisch gesch{\"u}tzten Defektzustandes gezeigt. Dazu geh{\"o}rt vor allem die Ausbildung der lokalisierten Defektmode in der Mitte der S-Bandl{\"u}cke. Die erhaltenen Ergebnisse stellen einen wichtigen Schritt in der Realisierung eines elektrisch betriebenen topologischen Polariton-Lasers dar. Abschließend wird ein elektrooptisches Bauteil auf der Basis von Polaritonen in einem Mikrodrahtresonator vorgestellt, in dem sich die Propagation eines PolaritonKondensats mittels eines elektrostatischen Feldes kontrollieren l{\"a}sst. Das Funktionsprinzip des Polariton-Schalters beruht auf der Kombination einer elektrostatischen Potentialsenke unterhalb des Kontaktes und der damit verbundenen erh{\"o}hten ExzitonIonisationsrate. Der Schaltvorgang wird sowohl qualitativ als auch quantitativ analysiert und die Erhaltenen Ergebnisse durch die Modellierung des Systems {\"u}ber die GrossPitaevskii-Gleichung beschrieben. Zus{\"a}tzlich wird ein negativer differentieller Widerstand und ein bistabiles Verhalten in der Strom-Spannungs-Charakteristik in Abh{\"a}ngigkeit von der Ladungstr{\"a}gerdichte im Kontaktbereich beobachtet. Dieses Verhalten wird auf gegenseitig konkurrierende Kondensats-Zust{\"a}nde innerhalb der Potentialsenke und deren Besetzung und damit direkt auf den r{\"a}umlichen Freiheitsgrad der PolaritonZust{\"a}nde zur{\"u}ckgef{\"u}hrt.}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} } @phdthesis{Youssef2022, author = {Youssef, Almoatazbellah}, title = {Fabrication of Micro-Engineered Scaffolds for Biomedical Application}, doi = {10.25972/OPUS-23545}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235457}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Thermoplastic polymers have a history of decades of safe and effective use in the clinic as implantable medical devices. In recent years additive manufacturing (AM) saw increased clinical interest for the fabrication of customizable and implantable medical devices and training models using the patients' own radiological data. However, approval from the various regulatory bodies remains a significant hurdle. A possible solution is to fabricate the AM scaffolds using materials and techniques with a clinical safety record, e.g. melt processing of polymers. Melt Electrowriting (MEW) is a novel, high resolution AM technique which uses thermoplastic polymers. MEW produces scaffolds with microscale fibers and precise fiber placement, allowing the control of the scaffold microarchitecture. Additionally, MEW can process medical-grade thermoplastic polymers, without the use of solvents paving the way for the production of medical devices for clinical applications. This pathway is investigated in this thesis, where the layout is designed to resemble the journey of a medical device produced via MEW from conception to early in vivo experiments. To do so, first, a brief history of the development of medical implants and the regenerative capability of the human body is given in Chapter 1. In Chapter 2, a review of the use of thermoplastic polymers in medicine, with a focus on poly(ε-caprolactone) (PCL), is illustrated, as this is the polymer used in the rest of the thesis. This review is followed by a comparison of the state of the art, regarding in vivo and clinical experiments, of three polymer melt AM technologies: melt-extrusion, selective laser sintering and MEW. The first two techniques already saw successful translation to the bedside, producing patient-specific, regulatory-approved AM implants. To follow in the footsteps of these two technologies, the MEW device parameters need to be optimized. The MEW process parameters and their interplay are further discussed in Chapter 3 focusing on the importance of a steady mass flow rate of the polymer during printing. MEW reaches a balance between polymer flow, the stabilizing electric field and moving collector to produce reproducible, high-resolution scaffolds. An imbalance creates phenomena like fiber pulsing or arcing which result in defective scaffolds and potential printer damage. Chapter 4 shows the use of X-ray microtomography (µCT) as a non-destructive method to characterize the pore-related features: total porosity and the pore size distribution. MEW scaffolds are three-dimensional (3D) constructs but have long been treated in the literature as two-dimensional (2D) ones and characterized mainly by microscopy, including stereo- and scanning electron microscopy, where pore size was simply reported as the distance between the fibers in a single layer. These methods, together with the trend of producing scaffolds with symmetrical pores in the 0/90° and 0/60/120° laydown patterns, disregarded the lateral connections between pores and the potential of MEW to be used for more complex 3D structures, mimicking the extracellular matrix. Here we characterized scaffolds in the aforementioned symmetrical laydown patterns, along with the more complex 0/45/90/135° and 0/30/60/90/120/150° ones. A 2D pore size estimation was done first using stereomicroscopy, followed by and compared to µCT scanning. The scaffolds with symmetrical laydown patterns resulted in the predominance of one pore size, while those with more complex patterns had a broader distribution, which could be better shown by µCT scans. Moreover, in the symmetrical scaffolds, the size of 3D pores was not able to reach the value of the fiber spacing due to a flattening effect of the scaffold, where the thickness of the scaffold was less than the fiber spacing, further restricting the pore size distribution in such scaffolds. This method could be used for quality assurance of fabricated scaffolds prior to use in in vitro or in vivo experiments and would be important for a clinical translation. Chapter 5 illustrates a proof of principle subcutaneous implantation in vivo experiment. MEW scaffolds were already featured in small animal in vivo experiments, but to date, no analysis of the foreign body reaction (FBR) to such implants was performed. FBR is an immune reaction to implanted foreign materials, including medical devices, aimed at protecting the host from potential adverse effects and can interfere with the function of some medical implants. Medical-grade PCL was used to melt electrowrite scaffolds with 50 and 60 µm fiber spacing for the 0/90° and 0/60/120° laydown patterns, respectively. These implants were implanted subcutaneously in immunocompetent, outbred mice, with appropriate controls, and explanted after 2, 4, 7 and 14 days. A thorough characterization of the scaffolds before implantation was done, followed by a full histopathological analysis of the FBR to the implants after excision. The scaffolds, irrespective of their pore geometry, induced an extensive FBR in the form of accumulation of foreign body giant cells around the fiber walls, in a manner that almost occluded available pore spaces with little to no neovascularization. This reaction was not induced by the material itself, as the same reaction failed to develop in the PCL solid film controls. A discussion of the results was given with special regard to the literature available on flat surgical meshes, as well as other hydrogel-based porous scaffolds with similar pore sizes. Finally, a general summary of the thesis in Chapter 6 recapitulates the most important points with a focus on future directions for MEW.}, language = {en} } @article{GramGenslerWinteretal.2022, author = {Gram, Maximilian and Gensler, Daniel and Winter, Patrick and Seethaler, Michael and Arias-Loza, Paula Anahi and Oberberger, Johannes and Jakob, Peter Michael and Nordbeck, Peter}, title = {Fast myocardial T\(_{1P}\) mapping in mice using k-space weighted image contrast and a Bloch simulation-optimized radial sampling pattern}, series = {Magnetic Resonance Materials in Physics, Biology and Medicine}, volume = {35}, journal = {Magnetic Resonance Materials in Physics, Biology and Medicine}, number = {2}, issn = {1352-8661}, doi = {10.1007/s10334-021-00951-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268903}, pages = {325-340}, year = {2022}, abstract = {Purpose T\(_{1P}\) dispersion quantification can potentially be used as a cardiac magnetic resonance index for sensitive detection of myocardial fibrosis without the need of contrast agents. However, dispersion quantification is still a major challenge, because T\(_{1P}\) mapping for different spin lock amplitudes is a very time consuming process. This study aims to develop a fast and accurate T\(_{1P}\) mapping sequence, which paves the way to cardiac T1ρ dispersion quantification within the limited measurement time of an in vivo study in small animals. Methods A radial spin lock sequence was developed using a Bloch simulation-optimized sampling pattern and a view-sharing method for image reconstruction. For validation, phantom measurements with a conventional sampling pattern and a gold standard sequence were compared to examine T\(_{1P}\) quantification accuracy. The in vivo validation of T\(_{1P}\) mapping was performed in N = 10 mice and in a reproduction study in a single animal, in which ten maps were acquired in direct succession. Finally, the feasibility of myocardial dispersion quantification was tested in one animal. Results The Bloch simulation-based sampling shows considerably higher image quality as well as improved T\(_{1P}\) quantification accuracy (+ 56\%) and precision (+ 49\%) compared to conventional sampling. Compared to the gold standard sequence, a mean deviation of - 0.46 ± 1.84\% was observed. The in vivo measurements proved high reproducibility of myocardial T\(_{1P}\) mapping. The mean T\(_{1P}\) in the left ventricle was 39.5 ± 1.2 ms for different animals and the maximum deviation was 2.1\% in the successive measurements. The myocardial T\(_{1P}\) dispersion slope, which was measured for the first time in one animal, could be determined to be 4.76 ± 0.23 ms/kHz. Conclusion This new and fast T\(_{1P}\) quantification technique enables high-resolution myocardial T\(_{1P}\) mapping and even dispersion quantification within the limited time of an in vivo study and could, therefore, be a reliable tool for improved tissue characterization.}, language = {en} } @phdthesis{Schmitt2022, author = {Schmitt, Matthias}, title = {High Energy Spin- and Momentum-Resolved Photoelectron Spectroscopy of Complex Oxides}, doi = {10.25972/OPUS-26475}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-264757}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Spin- and \(k\)-resolved hard X-ray photoelectron spectroscopy (HAXPES) is a powerful tool to probe bulk electronic properties of complex metal oxides. Due to the low efficiency of common spin detectors of about \(10^{-4}\), such experiments have been rarely performed within the hard X-ray regime since the notoriously low photoionization cross sections further lower the performance tremendously. This thesis is about a new type of spin detector, which employs an imaging spin-filter with multichannel electron recording. This increases the efficiency by a factor of \(10^4\) and makes spin- and \(k\)-resolved photoemission at high excitation energies possible. Two different technical approaches were pursued in this thesis: One using a hemispherical deflection analyzer (HDA) and a separate external spin detector chamber, the other one resorting to a momentum- or \(k\)-space microscope with time-of-flight (TOF) energy recording and an integrated spin-filter crystal. The latter exhibits significantly higher count rates and - since it was designed for this purpose from scratch - the integrated spin-filter option found out to be more viable than the subsequent upgrade of an existing setup with an HDA. This instrumental development is followed by the investigation of the complex metal oxides (CMOs) KTaO\(_3\) by angle-resolved HAXPES (HARPES) and Fe\(_3\)O\(_4\) by spin-resolved HAXPES (spin-HAXPES), respectively. KTaO\(_3\) (KTO) is a band insulator with a valence-electron configuration of Ta 5\(d^0\). By angle- and spin-integrated HAXPES it is shown that at the buried interface of LaAlO\(_3\)/KTO - by the generation of oxygen vacancies and hence effective electron doping - a conducting electron system forms in KTO. Further investigations using the momentum-resolution of the \(k\)-space TOF microscope show that these states are confined to the surface in KTO and intensity is only obtained from the center or the Gamma-point of each Brillouin zone (BZ). These BZs are furthermore square-like arranged reflecting the three-dimensional cubic crystal structure of KTO. However, from a comparison to calculations it is found that the band structure deviates from that of electron-doped bulk KTaO\(_3\) due to the confinement to the interface. There is broad consensus that Fe\(_3\)O\(_4\) is a promising material for spintronics applications due to its high degree of spin polarization at the Fermi level. However, previous attempts to measure the spin polarization by spin-resolved photoemission spectroscopy have been hampered by the use of low photon energies resulting in high surface sensitivity. The surfaces of magnetite, though, tend to reconstruct due to their polar nature, and thus their magnetic and electronic properties may strongly deviate from each other and from the bulk, dependent on their orientation and specific preparation. In this work, the intrinsic bulk spin polarization of magnetite at the Fermi level (\(E_F\)) by spin-resolved photoelectron spectroscopy, is determined by spin-HAXPES on (111)-oriented thin films, epitaxially grown on ZnO(0001) to be \(P(E_F) = -80^{+10}_{-20}\) \%.}, subject = {Elektronenkorrelation}, language = {en} } @phdthesis{Hoecker2022, author = {H{\"o}cker, Julian Harald}, title = {High-quality Organolead Trihalide Perovskite Crystals: Growth, Characterisation, and Photovoltaic Applications}, doi = {10.25972/OPUS-25859}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258590}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Overview of the Organolead Trihalide Perovskite Crystal Area Studies of perovskite single crystals with high crystallographic quality is an important technological area of the perovskite research, which enables to estimate their full optoelectronic potential, and thus to boost their future applications [26]. It was therefore essential to grow high-quality single crystals with lowest structural as well as chemical defect densities and with a stoichiometry relevant for their thin-film counterparts [26]. Optoelectronic devices, e.g. solar cells, are highly complex systems in which the properties of the active layer (absorber) are strongly influenced by the adjacent layers, so it is not always easy to define the targeted properties and elaborate the design rules for the active layer. Currently, organolead trihalide perovskite (OLTP) single crystals with the structure ABX3 are one of the most studied crystalline systems. These hybrid crystals are solids composed of an organic cation such as methylammonium (A = MA+) or formamidinium (A = FA+) to form a three-dimensional periodic lattice together with the lead cation (B = Pb2+) and a halogen anion such as chloride, bromide or iodide (X = Cl-, Br- or I-) [23]. Among them are methylammonium lead tribromide (MAPbBr3), methylammonium lead triiodide (MAPbI3), as well as methylammonium lead trichloride (MAPbCl3) [62, 63]. Important representatives with the larger cation FA+ are formamidinium lead tribromide (FAPbBr3) and formamidinium lead triiodide (FAPbI3) [23, 64]. Besides the exchange of cations as well as anions, it was possible to grow crystals containing two halogens to obtain mixed crystals with different proportions of chlorine to bromine and bromine to iodine, as it is shown in Figure 70. By varying the mixing ratio of the halogens, it was therefore possible to vary the colour and thus the absorption properties of the crystals [85], as it can be done with thin polycrystalline perovskite films. In addition, since a few years it is also doable to grow complex crystals that contain several cations as well as anions [26, 80, 81]. These include the perovskites double cation - double halide formamidinium lead triiodide - methylammonium lead tribromide (FAPbI3)0.9(MAPbBr3)0.1 (FAMA) [26, 80] and formamidinium lead triiodide - methylammonium lead tribromide - caesium lead tribromide (FAPbI3)0.9(MAPbBr3)0.05(CsPbBr3)0.05 (CsFAMA) [81], which have made a significant contribution to increase the power conversion efficiency (PCE) in thin-film photovoltaics [47, 79, 182]. The growth of crystals to this day is performed exclusively from solution [23, 26, 56, 62]. Important preparation methods are the cooling acid-based precursor solution crystallisation [22], the inverse temperature crystallisation (ITC) [62], and the antisolvent vapour-assistant crystallisation (AVC) [137]. In the cooling crystallisation, the precursor salts AX and PbX2 are dissolved in an aqueous halogen-containing acid at high temperatures [56]. Controlled and slow cooling finally results in a supersaturated precursor solution, which leads to spontaneous nucleation of crystal nuclei, followed by subsequent crystal growth. The ITC method is based on the inverse or retrograde solubility of a dissociated perovskite in an organic solvent [23, 64]. With increasing temperature, the solubility of the perovskite decreases and mm-sized crystals can be grown within a few hours [23]. In the AVC method, the precursors are also dissolved in an organic solvent as well [137]. By slow evaporation of a so-called antisolvent [137], the solubility of the perovskite in the now present solvent mixture decreases and it finally precipitates. In addition, there are many other methods with the goal of growing high quality and large crystals in a short period of time [60, 61, 233, 310].}, subject = {Perowskit}, language = {en} } @article{LiShanRupprechtetal.2022, author = {Li, Donghai and Shan, Hangyong and Rupprecht, Christoph and Knopf, Heiko and Watanabe, Kenji and Taniguchi, Takashi and Qin, Ying and Tongay, Sefaattin and Nuß, Matthias and Schr{\"o}der, Sven and Eilenberger, Falk and H{\"o}fling, Sven and Schneider, Christian and Brixner, Tobias}, title = {Hybridized exciton-photon-phonon states in a transition-metal-dichalcogenide van-der-Waals heterostructure microcavity}, series = {Physical Review Letters}, journal = {Physical Review Letters}, edition = {accepted version}, issn = {1079-7114}, doi = {10.1103/PhysRevLett.128.087401}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-351303}, year = {2022}, abstract = {Excitons in atomically thin transition-metal dichalcogenides (TMDs) have been established as an attractive platform to explore polaritonic physics, owing to their enormous binding energies and giant oscillator strength. Basic spectral features of exciton polaritons in TMD microcavities, thus far, were conventionally explained via two-coupled-oscillator models. This ignores, however, the impact of phonons on the polariton energy structure. Here we establish and quantify the threefold coupling between excitons, cavity photons, and phonons. For this purpose, we employ energy-momentum-resolved photoluminescence and spatially resolved coherent two-dimensional spectroscopy to investigate the spectral properties of a high-quality-factor microcavity with an embedded WSe\(_2\) van-der-Waals heterostructure at room temperature. Our approach reveals a rich multi-branch structure which thus far has not been captured in previous experiments. Simulation of the data reveals hybridized exciton-photon-phonon states, providing new physical insight into the exciton polariton system based on layered TMDs.}, language = {en} } @phdthesis{Iff2022, author = {Iff, Oliver}, title = {Implementierung und Charakterisierung von Einzelphotonenquellen in zweidimensionalen Übergangsmetall-Dichalkogeniden und deren Kopplung an optische Resonatoren}, doi = {10.25972/OPUS-28140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281404}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Schon heute bilden Einzelphotonenquellen einen wichtigen Baustein in der Photonik und Quanteninformation. Der Fokus der Forschung liegt entsprechend auf dem Finden und Charakterisieren daf{\"u}r geeigneter Materialsysteme. Konkret beschäftigt sich die vorliegende Arbeit vorwiegend mit dem Übergangsmetall-Dichalkogenid (TMDC1 ) Wolframdiselenid und seinen Eigenschaften. Diese Wahl ist durch den direkte Zugang zu Einzelphotonenquellen begr{\"u}ndet, die sich in dessen Monolagen ausbilden können. Diese Lichtquellen können {\"u}ber eine Modulation der Verspannung der Monolage gezielt aktiviert werden. Durch die, verglichen mit ihrem Volumen, riesige Kontaktfläche lassen sich Monolagen zudem mit Hilfe des Substrats, auf das sie transferiert wurden, wesentlich beeinflussen. Im Rahmen dieser Arbeit wurden Monolagen von WSe2 in unterschiedlichen Bauteilen wie zirkulare Bragg-Gittern oder vorstrukturierten, metallischen Oberflächen implementiert und die Photolumineszenz des TMDCs untersucht. Diese Arbeit belegt die Möglichkeit, Einzelphotonenquellen basierend aufWSe2 -Monolagen auf verschiedenste Weise modulieren zu können. Dank ihrer zwei- dimensionalen Geometrie lassen sie sich einfach in bestehende Strukturen integrieren oder auch in der Zukunft mit weiteren 2D-Materialien kombinieren.}, subject = {Einzelphotonenemission}, language = {de} } @article{ChristHaertlKlosteretal.2022, author = {Christ, Andreas and H{\"a}rtl, Patrick and Kloster, Patrick and Bode, Matthias and Leisegang, Markus}, title = {Influence of band structure on ballistic transport revealed by molecular nanoprobe}, series = {Physical Review Research}, volume = {4}, journal = {Physical Review Research}, number = {4}, doi = {10.1103/PhysRevResearch.4.043016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300855}, year = {2022}, abstract = {In this study we characterize the tautomerization of HPc on Cu(111) as a charge-carrier-induced reversible one-electron process. An analysis of the bias-dependent tautomerization rate finds an energy threshold that corresponds to the energy of the N-H stretching mode. By using the tautomerization of the molecule as a detector for charge carrier transport in the so-called molecular nanoprobe (MONA) technique, we provide evidence for an inhomogeneous coupling between the fourfold-symmetric molecule and sixfold-symmetric surface. We conclude the study by comparing the energy dependence of charge carrier transport on the Cu(111) to the Ag(111) surface. While the MONA technique is limited to the detection of hot-electron transport for Ag(111), our data reveal that the lower onset energy of the Cu surface state also allows for the detection of hot-hole transport. The influence of surface and bulk transport on the MONA technique is discussed.}, language = {en} } @phdthesis{Uenzelmann2022, author = {{\"U}nzelmann, Maximilian}, title = {Interplay of Inversion Symmetry Breaking and Spin-Orbit Coupling - From the Rashba Effect to Weyl Semimetals}, doi = {10.25972/OPUS-28310}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283104}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Breaking inversion symmetry in crystalline solids enables the formation of spin-polarized electronic states by spin-orbit coupling without the need for magnetism. A variety of interesting physical phenomena related to this effect have been intensively investigated in recent years, including the Rashba effect, topological insulators and Weyl semimetals. In this work, the interplay of inversion symmetry breaking and spin-orbit coupling and, in particular their general influence on the character of electronic states, i.e., on the spin and orbital degrees of freedom, is investigated experimentally. Two different types of suitable model systems are studied: two-dimensional surface states for which the Rashba effect arises from the inherently broken inversion symmetry at the surface, and a Weyl semimetal, for which inversion symmetry is broken in the three-dimensional crystal structure. Angle-resolved photoelectron spectroscopy provides momentum-resolved access to the spin polarization and the orbital composition of electronic states by means of photoelectron spin detection and dichroism with polarized light. The experimental results shown in this work are also complemented and supported by ab-initio density functional theory calculations and simple model considerations. Altogether, it is shown that the breaking of inversion symmetry has a decisive influence on the Bloch wave function, namely, the formation of an orbital angular momentum. This mechanism is, in turn, of fundamental importance both for the physics of the surface Rashba effect and the topology of the Weyl semimetal TaAs.}, subject = {Rashba-Effekt}, language = {en} } @phdthesis{Kissner2022, author = {Kißner, Katharina}, title = {Manipulation of electronic properties in strongly correlated Cerium-based surface alloys}, doi = {10.25972/OPUS-27306}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-273067}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Photoelectron spectroscopy proves as a versatile tool for investigating various aspects of the electronic structure in strongly correlated electron systems. Influencing the manifestation of strong correlation in Ce-based surface alloys is the main task of this work. It is shown, that the manifestation of the Kondo ground state is influenced by a multitude of parameters such as the choice of the metal binding partner in binary Ce compounds, the surface alloy layer thickness and accompanying variations in the lattice structure as well as the interfaces to substrate or vacuum. Gaining access to these parameters allows to directly influence essential state variables, such as the f level occupancy nf or the Kondo temperature TK. The center of this work are the intermetallic thin films of CePt5/Pt(111) and CeAgx/Ag(111). By utilizing different excitation energies, photoemission spectroscopy provides access to characteristic features of Kondo physics in the valence band, such as the Kondo resonance and its spin-orbit partner at the Fermi level, as well as the multiplet structure of the Ce 3d core levels. In this work both approaches are applied to CePt5/Pt(111) to determine nf and TK for a variety of surface alloy layer thicknesses. A temperature dependent study of the Ce 3d core levels allows to determine the systems TK for the different layer thicknesses. This leads to TK ≈200-270K in the thin layer thickness regime and TK >280K for larger layer thicknesses. These results are confirmed by fitting the Ce 3d multiplet based on the Gunnarsson-Sch{\"o}nhammer formalism for core level spectroscopy and additionally by valence band photoemission spectra of the respective Kondo resonances. The influence of varying layer thickness on the manifestation of strong correlation is subsequently studied for the surface alloy CeAgx/Ag(111). Furthermore, the heavy element Bi is added, to investigate the effects of strong spin-orbit coupling on the electronic structure of the surface alloy.}, subject = {Korrelation}, language = {en} } @phdthesis{Hajer2022, author = {Hajer, Jan}, title = {Mercury Telluride Nanowires for Topological Quantum Transport}, doi = {10.25972/OPUS-29322}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293222}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Novel appraches to the molecular beam epitaxy of core-shell nanowires in the group II telluride material system were explored in this work. Significant advances in growth spurred the development of a flexible and reliable platform for a charge transport characterization of the topological insulator HgTe in a tubular nanowire geometry. The transport results presented provide an important basis for the design of future studies that strive for the experimental realization of topological charge transport in the quantum wire limit.}, subject = {Quecksilbertellurid}, language = {en} } @article{MuellerSpriestersbachMinetal.2022, author = {M{\"u}ller, S. and Spriestersbach, F. and Min, C.-H. and Fornari, C. I. and Reinert, F.}, title = {Molecular beam epitaxy of TmTe thin films on SrF\(_{2}\) (111)}, series = {AIP Advances}, volume = {12}, journal = {AIP Advances}, number = {2}, doi = {10.1063/5.0083276}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300876}, year = {2022}, abstract = {The odd parity nature of 4f states characterized by strong spin-orbit coupling and electronic correlations has led to a search for novel topological phases among rare earth compounds, such as Kondo systems, heavy Fermions, and homogeneous mixed-valent materials. Our target system is thulium telluride thin films whose bandgap is expected to be tuned as a function of lattice parameter. We systematically investigate the growth conditions of TmxTey thin films on SrF\(_{2}\) (111) substrates by molecular beam epitaxy. The ratio between Te and Tm supply was precisely tuned, resulting in two different crystalline phases, which were confirmed by x-ray diffraction and x-ray photoemission spectroscopy. By investigating the crystalline quality as a function of the substrate temperature, the optimal growth conditions were identified for the desired Tm1Te1 phase. Additional low energy electron diffraction and reflective high energy electron diffraction measurements confirm the epitaxial growth of TmTe layers. X-ray reflectivity measurements demonstrate that homogeneous samples with sharp interfaces can be obtained for varied thicknesses. Our results provide a reliable guidance to prepare homogeneous high-quality TmTe thin films and thus serve as a basis for further electronic investigations.}, language = {en} }