@article{RoyTroesterFantuzzietal.2021, author = {Roy, Dipak Kumar and Tr{\"o}ster, Tobias and Fantuzzi, Felipe and Dewhurst, Rian D. and Lenczyk, Carsten and Radacki, Krzysztof and Pranckevicius, Conor and Engels, Bernd and Braunschweig, Holger}, title = {Isolation and Reactivity of an Antiaromatic s-Block Metal Compound}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {7}, doi = {10.1002/anie.202014557}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224447}, pages = {3812 -- 3819}, year = {2021}, abstract = {The concepts of aromaticity and antiaromaticity have a long history, and countless demonstrations of these phenomena have been made with molecules based on elements from the p, d, and f blocks of the periodic table. In contrast, the limited oxidation-state flexibility of the s-block metals has long stood in the way of their participation in sophisticated π-bonding arrangements, and truly antiaromatic systems containing s-block metals are altogether absent or remain poorly defined. Using spectroscopic, structural, and computational techniques, we present herein the synthesis and authentication of a heterocyclic compound containing the alkaline earth metal beryllium that exhibits significant antiaromaticity, and detail its chemical reduction and Lewis-base-coordination chemistry.}, language = {en} }