@article{HeidtKaemmererFobkeretal.2023, author = {Heidt, Christina and K{\"a}mmerer, Ulrike and Fobker, Manfred and R{\"u}ffer, Andreas and Marquardt, Thorsten and Reuss-Borst, Monika}, title = {Assessment of intestinal permeability and inflammation bio-markers in patients with rheumatoid arthritis}, series = {Nutrients}, volume = {15}, journal = {Nutrients}, number = {10}, issn = {2072-6643}, doi = {10.3390/nu15102386}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319377}, year = {2023}, abstract = {Increased intestinal permeability and inflammation, both fueled by dysbiosis, appear to contribute to rheumatoid arthritis (RA) pathogenesis. This single-center pilot study aimed to investigate zonulin, a marker of intestinal permeability, and calprotectin, a marker of intestinal inflammation, measured in serum and fecal samples of RA patients using commercially available kits. We also analyzed plasma lipopolysaccharide (LPS) levels, a marker of intestinal permeability and inflammation. Furthermore, univariate, and multivariate regression analyses were carried out to determine whether or not there were associations of zonulin and calprotectin with LPS, BMI, gender, age, RA-specific parameters, fiber intake, and short-chain fatty acids in the gut. Serum zonulin levels were more likely to be abnormal with a longer disease duration and fecal zonulin levels were inversely associated with age. A strong association between fecal and serum calprotectin and between fecal calprotectin and LPS were found in males, but not in females, independent of other biomarkers, suggesting that fecal calprotectin may be a more specific biomarker than serum calprotectin is of intestinal inflammation in RA. Since this was a proof-of-principle study without a healthy control group, further research is needed to validate fecal and serum zonulin as valid biomarkers of RA in comparison with other promising biomarkers.}, language = {en} } @phdthesis{Soundararajan2020, author = {Soundararajan, Manonmani}, title = {Investigations into the mechanisms behind the antagonistic effects and phage resistance of probiotic Escherichia coli strain Nissle 1917}, doi = {10.25972/OPUS-21525}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215256}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Gastrointestinal infections account for high morbidity and mortality in humans every year across the globe. The increasing emergence of antibiotic resistance among the gastrointestinal pathogens and the induction of virulence factors by antibiotics makes it highly risky to only depend on antibiotic therapy for intestinal infections. Most of these infections are associated with an imbalance in the gut microbial population whereas the restoration of the balance with probiotic supplements can result in an improvement of the health condition. Probiotics are therefore considered as successful support in the treatment of gastrointestinal infections. E. coli Nissle 1917 (EcN) is the active component of the probiotic medication Mutaflor® and has been used in the treatment of various gastrointestinal disorders for more than 100 years. Several studies have reported antagonistic effects of EcN against enterohemorrhagic E. coli (EHEC) in vitro and in vivo. However, detailed investigations on the probiotic mechanisms and safety aspects of EcN are a pre-requisite, for administering EcN to treat EHEC infected patients or to use EcN as a prophylactic for the patient's close contacts. In this regard, the first part of the study aimed to understand the nature and behaviour of EcN in the presence of pathogenic or non-pathogenic E. coli strains. Transcriptomic analysis was deployed to this end. We investigated the changes in EcN's transcriptome after different time points of coculture with the EHEC strain EDL933 or the K-12 strain MG1655. The transcriptome data reported a strain-specific response in EcN at all the investigated time points (3 h, 5 h, 7 h and 8 h) of coincubation. The alterations in gene regulation of EcN were highly pronounced in initial timepoints (3 h and 5 h) of coincubation with EDL933, which gradually decreased over time. In the presence of MG1655, the alterations were strongly differentially regulated only at later time points (7 h and 8 h). The unique transcriptional response of EcN towards two different E. coli strains, that are genetically more than 98 \% identical, was startling. 12 More importantly, this can be considered as a beneficial trait of EcN over a chemical-pharmaceutical preparation like an antibiotic that might act identically on all target cells. Bacteriophages are one of the most abundant members of gut microbiota. On the one hand, the infection of a probiotic strain by a lysogenic phage could transfer genetic material coding for pathogenic factors or antibiotic resistance into an otherwise beneficial probiotic bacterium and thereby converting it into a virulent pathogenic bacterium. On the other hand, infection by a lytic phage could result in bacterial lysis and prevent the bacterium from exerting its probiotic effect. Thus, in order to successfully establish and colonise the gut, it is crucial for any probiotic to be resistant against phage infections. To address this, in the second part of the study, we investigated the phage resistance of EcN towards the lysogenic lambda and the lytic T4 phage. EcN showed complete resistance against tested phages and was also able to inactivate these phages upon coincubation. In the case of lambda phages, the resistance was attributed to the presence of a lambdoid prophage (prophage 3) in the genome of EcN. In addition, the overexpression of one of the early genes of EcN's prophage 3 (i.e. phage repressor gene pr) in the phage sensitive MG1655 conferred partial protection against lambda phage infection. Moreover, the inactivation was mediated by binding of lambda phages to its receptor LamB. Experiments with lytic T4 phages revealed that the EcN's K5 polysaccharide capsule was crucial for its T4 phage resistance, while its lipopolysaccharide (LPS) inactivated the T4 phages. Apart from protecting itself, EcN displayed even a protective role for the tested K-12 strains, by interfering with the lysogeny and lysis by these phages. In summary, this work highlights two novel positive traits of the probiotic strain EcN: i) the strain-specific response that was evident from the global transcriptome analysis of EcN when incubated with other E. coli strains, and ii) lytic and lysogenic phage resistance. Both these traits are additional safety aspects for a well-characterised probiotic strain and encourage its application in therapeutics.}, language = {en} } @article{CouchTrofimovMarkovaetal.2016, author = {Couch, Yvonne and Trofimov, Alexander and Markova, Natalyia and Nikolenko, Vladimir and Steinbusch, Harry W. and Chekhonin, Vladimir and Schroeter, Careen and Lesch, Klaus-Peter and Anthony, Daniel C. and Strekalova, Tatyana}, title = {Low-dose lipopolysaccharide (LPS) inhibits aggressive and augments depressive behaviours in a chronic mild stress model in mice}, series = {Journal of Neuroinflammation}, volume = {13}, journal = {Journal of Neuroinflammation}, number = {108}, doi = {10.1186/s12974-016-0572-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165676}, pages = {1-17}, year = {2016}, abstract = {Background Aggression, hyperactivity, impulsivity, helplessness and anhedonia are all signs of depressive-like disorders in humans and are often reported to be present in animal models of depression induced by stress or by inflammatory challenges. However, chronic mild stress (CMS) and clinically silent inflammation, during the recovery period after an infection, for example, are often coincident, but comparison of the behavioural and molecular changes that underpin CMS vs a mild inflammatory challenge and impact of the combined challenge is largely unexplored. Here, we examined whether stress-induced behavioural and molecular responses are analogous to lipopolysaccharide (LPS)-induced behavioural and molecular effects and whether their combination is adaptive or maladaptive. Methods Changes in measures of hedonic sensitivity, helplessness, aggression, impulsivity and CNS and systemic cytokine and 5-HT-system-related gene expression were investigated in C57BL/6J male mice exposed to chronic stress alone, low-dose LPS alone or a combination of LPS and stress. Results When combined with a low dose of LPS, chronic stress resulted in an enhanced depressive-like phenotype but significantly reduced manifestations of aggression and hyperactivity. At the molecular level, LPS was a strong inducer of TNFα, IL-1β and region-specific 5-HT2A mRNA expression in the brain. There was also increased serum corticosterone as well as increased TNFα expression in the liver. Stress did not induce comparable levels of cytokine expression to an LPS challenge, but the combination of stress with LPS reduced the stress-induced changes in 5-HT genes and the LPS-induced elevated IL-1β levels. Conclusions It is evident that when administered independently, both stress and LPS challenges induced distinct molecular and behavioural changes. However, at a time when LPS alone does not induce any overt behavioural changes per se, the combination with stress exacerbates depressive and inhibits aggressive behaviours.}, language = {en} } @article{FujKappEinsele2014, author = {Fuj, Shigeo and Kapp, Markus and Einsele, Hermann}, title = {Possible Implication of Bacterial Infection in Acute Graft-Versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation}, series = {Frontiers in Oncology}, volume = {4}, journal = {Frontiers in Oncology}, number = {89}, issn = {2234-943X}, doi = {10.3389/fonc.2014.00089}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120674}, year = {2014}, abstract = {Graft-versus-host disease (GVHD) is still one of the major causes of morbidity and mortality in allogeneic hematopoietic stem cell transplantation (HSCT). In the pathogenesis of acute GVHD, it has been established that donor-derived T-cells activated in the recipient play a major role in GVHD in initiation and maintenance within an inflammatory cascade. To reduce the risk of GVHD, intensification of GVHD prophylaxis like T-cell depletion is effective, but it inevitably increases the risk of infectious diseases and abrogates beneficial graft-versus-leukemia effects. Although various cytokines are considered to play an important role in the pathogenesis of GVHD, GVHD initiation is such a complex process that cannot be prevented by means of single inflammatory cytokine inhibition. Thus, efficient methods to control the whole inflammatory milieu both on cellular and humoral view are needed. In this context, infectious diseases can theoretically contribute to an elevation of inflammatory cytokines after allogeneic HSCT and activation of various subtypes of immune effector cells, which might in summary lead to an aggravation of acute GVHD. The appropriate treatments or prophylaxis of bacterial infection during the early phase after allogeneic HSCT might be beneficial to reduce not only infectious-related but also GVHD-related mortality. Here, we aim to review the literature addressing the interactions of bacterial infections and GVHD after allogeneic HSCT.}, language = {en} } @article{GergsJahnSchulzetal.2022, author = {Gergs, Ulrich and Jahn, Tina and Schulz, Nico and Großmann, Claudia and Rueckschloss, Uwe and Demus, Uta and Buchwalow, Igor B. and Neumann, Joachim}, title = {Protein phosphatase 2A improves cardiac functional response to ischemia and sepsis}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {9}, issn = {1422-0067}, doi = {10.3390/ijms23094688}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284035}, year = {2022}, abstract = {Reversible protein phosphorylation is a posttranslational modification of regulatory proteins involved in cardiac signaling pathways. Here, we focus on the role of protein phosphatase 2A (PP2A) for cardiac gene expression and stress response using a transgenic mouse model with cardiac myocyte-specific overexpression of the catalytic subunit of PP2A (PP2A-TG). Gene and protein expression were assessed under basal conditions by gene chip analysis and Western blotting. Some cardiac genes related to the cell metabolism and to protein phosphorylation such as kinases and phosphatases were altered in PP2A-TG compared to wild type mice (WT). As cardiac stressors, a lipopolysaccharide (LPS)-induced sepsis in vivo and a global cardiac ischemia in vitro (stop-flow isolated perfused heart model) were examined. Whereas the basal cardiac function was reduced in PP2A-TG as studied by echocardiography or as studied in the isolated work-performing heart, the acute LPS- or ischemia-induced cardiac dysfunction deteriorated less in PP2A-TG compared to WT. From the data, we conclude that increased PP2A activity may influence the acute stress tolerance of cardiac myocytes.}, language = {en} } @phdthesis{Sienerth2010, author = {Sienerth, Arnold R.}, title = {Regulation of anti-inflammatory cytokine IL-10 by the Polycomb Group Protein Bmi1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-49990}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Macrophages are important effector cells of the innate and adaptive immune response and exert a wide variety of immunological functions which necessitates a high level of plasticity on the chromatin level. In response to pathogen-associated molecular patterns (PAMPs) or inflammatory signals macrophages undergo a process of cellular activation which is associated with morphologic, functional and biochemical changes. Toll-like receptors (TLR) are able to sense many different PAMPs. TLR4 is an important sensor for lipopolysaccharide (LPS) which elicits a major portion of the host's inflammatory response through the activation of many different signaling pathways such as the NF-\&\#954;B and the MAPK protein kinase pathways RASRAF- MEK-ERK, p38 and JNK. Polycomb group (PcG) proteins are well known chromatin modifiers which function in large complexes and are required to maintain chromatin structure in a transcriptionally repressed state. It has previously been shown that the PcG protein Bmi1 is phosphorylated by 3pK, a downstream effector kinase of the MAPK protein kinase pathways RAS-RAF-MEK-ERK, p38 and JNK. In this work I analyzed the role of Bmi1 as a downstream effector of MAPK signaling during macrophage activation. Unexpectedly a rapid up-regulation on the Bmi1 protein level was observed in bone marrow derived macrophages (BMDMs) after LPS treatment. The Bmi1 induction was associated with transient protein phosphorylation that occured downstream of MAPK signaling. LPS treatment of BMDMs in the absence of Bmi1 resulted in a pronounced increase of IL-10 secretion. This secretion of the anti-inflammatory cytokine IL-10 was associated with increased IL-10 mRNA levels. Furthermore, siRNA mediated knock down of Bmi1 in J774A.1 macrophages also resulted in elevated IL-10 mRNA levels in response to LPS. ChIP analysis revealed that Bmi1 binds to throughout the il-10 locus. Alternative activation of wild type BMDMs via concomitant TLR4 and Fc\&\#947;R activation which triggers high IL-10 expression is paralleled by an attenuated Bmi1 protein expression. These results identify Bmi1 as a repressor of IL-10 expression during activation of macrophages.}, subject = {Interleukin 10}, language = {en} }