@phdthesis{Grohmann2010, author = {Grohmann, Constanze}, title = {Termite mediated heterogeneity of soil and vegetation patternsin a semi-arid savanna ecosystem in Namibia}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54318}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Termites are the most important soil ecosystem engineers of semi-arid and arid habitats. They enhance decomposition processes as well as the subsequent mineralisation of nutrients by bacteria and fungi. Through their construction of galleries, nests and mounds, they promote soil turnover and influence the distribution of nutrients and also alter texture and hydrological properties of soils, thereby affecting the heterogeneity of their ecosystem. The main aim of the present thesis was to define the impact of termites on ecosys-tem functioning in a semi-arid ecosystem. In a baseline study, I assessed the diversity of termite taxa in relation to the amount of precipitation, the vegetation patterns and the land use systems at several sites in Namibia. Subsequently, I focussed on a species that is highly abundant in many African savannas, the fungus growing and mound building species Macro-termes michaelseni (Sj{\"o}stedt, 1914). I asked how this species influences the spatial hetero-geneity of soil and vegetation patterns. From repeated samplings at 13 sites in Namibia, I obtained 17 termite taxa of 15 genera. While the type of land use seems to have a minor effect on the termite fauna, the mean annual precipitation explained 96\% and the Simpson index of vascular plant diversity 81\% of the variation in taxa diversity. The number of termite taxa increased with both of these explanation variables. In contrast to former studies on Macrotermes mounds in several regions of Africa that I reviewed, soil analyses from M. michaelseni mounds in the central Namibian savanna revealed that they contain much higher nitrogen contents when compared to their parent material. Further analyses revealed that nitrate forms a major component of the nitrogen content in termite mounds. As nitrate solves easily in water, evaporation processes are most probably responsible for the transport of solved nitrates to the mound surface and their accumulation there. The analysed mounds in central Namibia contained higher sand propor-tions compared to the mounds of the former studies. Through the higher percentage of coarse and middle sized pores, water moves more easily in sandy soils compared to more clayey soils. In consequence, evaporation-driven nitrate accumulation can occur in the studied mounds at high rates. Hochgerechnet auf den Gesamtumfang der H{\"u}gel bedeckte das pro Jahr von einem bewohnten H{\"u}gel erodierte Material theoretisch einen 1 m breiten Kreisring um den Schwemmkegel des H{\"u}gels 2,4 mm hoch. Der entsprechende Wert f{\"u}r unbewohnte H{\"u}gel betrug 1,0 mm. To assess the amount of soil that erodes from termite mounds, I fastened four strong, 65 cm wide plastic bags at 14 mounds each and collected the soil that eroded during five rainfall events. Projected to the total mound circumference, the amount of soil eroded covers theoretically a 1 m wide circular ring around the pediment of an inhabited mound up to a height of 2.4 mm per year. For uninhabited mounds, the height of this soil layer would be 1.0 mm. Per hectare, roughly 245 kg eroded per year from the mounds. However, as the erosion rate depends on several factors such as rainfall intensity, soil texture and point of time within the rainy season, this is only a vague estimate. In order to determine up to which distance the soil erosion from the mounds still influences the chemical characteristics of the adjacent topsoil, I took samples from depth of 0-10 cm at 1, 5 and 25 m distances, respectively, from four different mounds and from the mounds themselves. The non-metric multidimensional scaling of the soil properties showed strong differences between mound and off-mound samples. Soil characteristics within the samples from the mounds did not differ largely. Similarly, I found no strong differences between the samples taken from the different distances from the mound. From these results I conclude that through the construction of foraging galleries and sheetings (soil constructions with which some termite species cover their food items), the soil eroding from termite mounds is quickly mixed with deeper soil layers. In consequence, mound material does not accumulate in the mound's vicinity. In order to reveal how plant growth is influenced by termite mound material, we assessed the number of grass and herb individuals as well as the biomass of plants growing in situ on the base of mounds compared to adjacent sites. While the numbers of both grass and herb individuals were significantly lower compared to adjacent sites, the total biomass of plants growing on the base of mounds was significantly higher. Reverse results were obtained by pot experiments with radish (Raphanus sativus subsp. sativus) and sorghum (Sorghum sp.) growth. Both species grew significantly weaker on mound soil compared to adjacent soil. The contradictory results concerning the biomass of in situ and pot experi-ments are most probably caused by the disturbance of the original soil structure during the potting process. The material was subsequently compacted through watering the plants. In contrast, Macrotermes mounds are pervaded by many macropores which seem to be essential for the plant roots to penetrate the soil. In the last part of this thesis, I posed the question how mounds of M. michaelseni are distributed and what factors might be responsible for this pattern. Former studies showed that mound size is correlated with the size of its inhabiting colony. With several multi-scale analyses, I revealed that larger inhabited mounds were regularly distributed. Additionally, mounds which were closer together tended to be smaller than on average. This indicates that intraspecific competition controls the distribution and size of colonies and their mounds. Former studies concerning Odontotermes mounds substantiated that they are local hotspots of primary productivity and animal abundance. Based on these findings, simulations revealed that a regular distribution of these mounds leads to a greater ecosystem-wide productivity compared to a random arrangement. As in the present study, plant biomass was higher at the mounds compared to off-mound sites, this might hold true for M. michaelseni mounds. From the results of this thesis, I draw the conclusion that through their mound building activities, M. michaelseni strongly influences the distribution patterns of soil nutrients within the central Namibian savanna. These termites create sharp contrasts in nutrient levels and vegetation patterns between mound soils and off-mound soils and enhance the heterogeneity of their habitats. Former studies revealed that habitat hetero-geneity is important in generating species diversity and species richness in turn is correlated positively with biomass production and positively affects ecosystem services. In conclusion, the present thesis underlines the importance of M. michaelseni for ecosystem functioning of the central Namibian savanna.}, subject = {Termiten}, language = {en} } @phdthesis{Kaiser2014, author = {Kaiser, Dorkas}, title = {Termites and ants in BURKINA FASO (WEST AFRICA): taxonomic and functional diversity along land-use gradients; ecosystem services of termites in the traditional ZA{\"I} SYSTEM}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-107001}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The consequences of habitat change for human well-being are assumed to be especially extreme in Burkina Faso. The country is located in a highly drought-sensitive zone of West Africa, and small-scale subsistence farmers may be especially affected if losses of biodiversity lead to changes in ecosystem functioning; many depend on more or less degraded lands for agricultural production. The overall aim of the present thesis consequently was to characterize the functional traits of soil-organisms which are crucial for a productive and balanced soil environment in the study region - termites and ants. They are true ecosystem engineers whose activity alters the habitat. Through soil-turnover in the course of constructing biogenic structures of varying size and nature (mounds, nests, galleries, soil-sheetings, foraging-holes), they bioturbate huge amounts of soil masses and exert massive effects on soil structure, positively influencing the fertility, stability, aeration and water infiltration rate into soils; and they provide habitats for other species. In sub-Saharan Africa, ants and termites are the only active soil macrofauna during the long dry season; in the sub-Sahel zone of Burkina Faso, termites even represent the only active, quantitatively remarkable decomposers all year round. Since no information was available about the actual diversity of the focal arthropods, I divided the thesis in two main parts: In the first part, a baseline study, I assessed the local termite and ant fauna, and investigated their quantitative and qualitative response to changing habitat parameters resulting from increasing human impact ('functional response traits'). In the second and applied part, I addressed the impact of the biogenic structures which are important for the restoration of degraded soils ('functional effect traits'). Two traditional agricultural systems characteristic for the study region were selected. Each system represented a land-use intensification gradient comprising four distinct habitats now differing in the magnitude of human intervention but formerly having the same initial state. The first disturbance gradient, the temporal cross-section of a traditional soil water conservation technique to restore degraded heavily encrusted, barren soil named Za{\"i} in Ouahigouya (Yatenga province, sub-Sahel zone); the second disturbance gradient, an agriculture type using crop rotation and fallow as nutrient management techniques near Fada N'Gourma (Gourma province, North-Sudanese zone). No standard protocol existed for the assessment of termite and ant diversity in semi-arid (agro-) ecosystems; two widely accepted standard protocols provided the basis for the newly revised and combined rapid assessment protocol 'RAP': the ALL protocol for leaf litter ants of Agosti and Alonso (2000), and the transect protocol for termites in tropical forests of Jones and Eggleton (2000). In each study site, three to four replicate transects were conducted during the rainy seasons (2004—2008). The RAP-protocol turned out to be very effective to characterize, compare and monitor the taxonomic and functional diversity of termites and ants; between 70\% and 90\% of the estimated total species richness were collected on all levels (transects, habitats, regions). Together in both regions, 65 ant species (25 genera) and 39 termite species (13 genera) were collected. These findings represent the first records for Burkina Faso. The data indicate a high sensitivity of termites and ants to land-use intensification. The diversity strongly decreased with increasing anthropogenic impact in the North-Sudan region. In total, 53 ant species (23 genera) and 31 termite species (12 genera) were found. Very promising results concerning the recovery potential of the soil-arthropods' diversity were gathered in the Za{\"i} system. The diversity of both taxa strongly increased with increasing habitat rehabilitation - in total, 41 ant species (16 genera) and 33 termite species (11 genera) were collected. For both taxa significant differences could be noted in the shape of the density variations along the gradient. For instance termites: Fungus-growers showed the greatest adaptability to different management practices. The greatest variations between the habitats were observed in soil and grass-feeding termites. Whole functional groups were missing in heavily impacted habitats, e.g. soil-, grass-, and wood-feeders were absent in the degraded site in the sub-Sahel zone. Several environmental parameters could be identified which significantly explained a great part of the variations in the composition of the arthropods' communities; they indicate the importance of the habitats' structural complexity (vegetation structure) and concomitant effects on diurnal temperature and moisture fluctuations, the availability of food sources, and the soil-structure. The diversity of termites in the sub-Sahel region was strongly correlated with the crown-cover percentages, the topsoils' sand-content, and the availability of litter; in the North-Sudan region with the cumulated woody plant basal area, the topsoils' clay- and organic matter-content. The parameters identified for ant communities in the Za{\"i} system, were the height of trees, the topsoils' clay-content and air humidity; in the North-Sudan region the habitats' crown-cover percentages, the quantity of litter and again the height of trees. In the second part of the thesis, I first rapidly assessed the (natural) variations in the amount of epigeal soil-structures along the two disturbance gradients in order to judge the relative importance of termites and ants for soil-turnover. The results illustrated impressively that a) in all study sites, termites were the main bioturbators while ant structures were of minor importance for soil turn-over; b) earthworms and grass-feeding termites contributed significantly to soil turn-over in the more humid North-Sudan region; and c) the bioturbated soil mass varied between seasons and years, however, the relative importance of the different taxa seemed to be fairly constant. In the sub-Sahel zone, fungus-growing Odontotermes and Macrotermes species fully take over the important function of bioturbation, leading to the transport of huge amounts of fine-textured soil material to the surface; with increasing habitat restoration, coarse fragments decreased in the upper horizons and became concentrated deeper along the soil profile. Consequently, in the applied part, I concentrated on the bioturbation activity of fungus-growing termites in the four main stages of the Za{\"i} system: crusted bare soil (initial stage), millet field, young and old forest. In each of the four Za{\"i} sites nine experimental blocks (each comprising four plots of 1m2) were used to stimulate the foraging activity of fungus-growing termites with different, locally available organic materials (Aristida kerstingii hay, Bombax costatum wooden blocks, compost and a control without any organic amendment). The experiment was conducted twice for the duration of four weeks (rainy season 2005, dry season 2006). The plots were regularly checked and the increase of the area covered by sheetings chronologically followed. After four weeks a) all sheeting-soil was collected, air dried and separately weighed according to the different genera, and b) the foraging-holes were counted and their diameter measured. Additionally, c) ponded water infiltration was measured in selected plots, and d) the physicochemical properties of sheeting-soil were analyzed. In case of complete consumption of the offered hay during the experimental 4-weeks-duration, the same procedure (a, b) was followed before adding new hay to the respective plot. The comparison between the different plots, sites and seasons revealed clearly that hay was the most attractive bait; for each gram of hay removed, Odontotermes brought about 12 g soil to the surface, Macrotermes 4 g. Odontotermes was the only genus attracted by organic material to the degraded area, and was therefore the decisive primary physical ecosystem engineer in the Za{\"i} system, initiating the restoration process. The mass of soil bioturbated in the course of foraging increased strongly from the degraded, barren towards the most rehabilitated reforested site. Combining all 36 experimental plots per Za{\"i} stage, Odontotermes bioturbated 31.8 tons of soil per hectare and month dry season in the degraded area, and 32.4 tons ha-1 mon-1 in the millet fields; both genera moved 138.9 tons ha-1 mon-1 in the young and 215.5 tons ha-1 mon-1 in the old Za{\"i} forest. Few comparable figures were found in the literature. In northern Burkina Faso, both genera constructed 20 tons of sheetings ha-1 mon-1 after mulching with a straw-wood mixture (Mando \& Miedema 1997), and in Senegal, around 10 tons ha-1 mon-1 were moved in heavily foraged plots (Rouland et al. 2003). Within a site, soil turn-over and the number of foraging holes created was always highest in hay, followed by compost, then by wood and in the end control. The fungus-growers' foraging-activity was leading to an enormous increase in surface pore space - after one month of induced foraging activity in hay-plots, the median number of foraging-holes increased from 142 m-2 in the degraded site up to 921 m-2 in the old Za{\"i} forest. The creation of subterranean galleries and macropores significantly increased the water infiltration rate by a mean factor 2-4. Laboratory analyses revealed that sheeting-soil differed strongly from the respective control soil as well as between the seasons, the food-type covered, and the two genera. Odontotermes-sheetings differed in more parameters than Macrotermes-sheetings, and dry season sheetings differed in more parameters (and more strongly) than rainy season sheetings. In the present study, soil organic matter, carbon and nitrogen contents were significantly increased in all dry season sheetings; in the rainy season mainly in those built on compost. Texture analysis pointed out that both genera used topsoil and soil from deeper horizons in varying mixture ratios, thereby supporting findings of Jouquet et al. (2006). To summarize, the present thesis contributes to a better understanding of the functional response traits of termites and ants to changing environmental parameters resulting from increasing human impact. The RAP-protocol represents an easy-to-learn and very effective method to representatively characterize, compare and monitor the taxonomic and functional diversity of termites and ants. The experiment has provided conclusive evidence of the importance of the consideration of fungus-growing termites (particularly Odontotermes and Macrotermes species) when aiming to restore infertile, degraded and crusted soils and to maintain a sustainable agricultural production in the Sahel-Sudanese zone of West Africa.}, subject = {Termiten}, language = {en} }