@article{LohrTerekhovVeitetal.2020, author = {Lohr, David and Terekhov, Maxim and Veit, Franziska and Schreiber, Laura Maria}, title = {Longitudinal assessment of tissue properties and cardiac diffusion metrics of the ex vivo porcine heart at 7 T: Impact of continuous tissue fixation using formalin}, series = {NMR in Biomedicine}, volume = {33}, journal = {NMR in Biomedicine}, number = {7}, doi = {10.1002/nbm.4298}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215536}, year = {2020}, abstract = {In this study we aimed to assess the effects of continuous formalin fixation on diffusion and relaxation metrics of the ex vivo porcine heart at 7 T. Magnetic resonance imaging was performed on eight piglet hearts using a 7 T whole body system. Hearts were measured fresh within 3 hours of cardiac arrest followed by immersion in 10\% neutral buffered formalin. T\(_{2}\)* and T\(_{2}\) were assessed using a gradient multi-echo and multi-echo spin echo sequence, respectively. A spin echo and a custom stimulated echo sequence were employed to assess diffusion time-dependent changes in metrics of cardiac diffusion tensor imaging. SNR was determined for b = 0 images. Scans were performed for 5 mm thick apical, midcavity and basal slices (in-plane resolution: 1 mm) and repeated 7, 15, 50, 100 and 200 days postfixation. Eigenvalues of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) decreased significantly (P < 0.05) following fixation. Relative to fresh hearts, FA values 7 and 200 days postfixation were 90\% and 80\%, while respective relative ADC values at those fixation stages were 78\% and 92\%. Statistical helix and sheetlet angle distributions as well as respective mean and median values showed no systematic influence of continuous formalin fixation. Similar to changes in the ADC, values for T\(_{2}\), T\(_{2}\)* and SNR dropped initially postfixation. Respective relative values compared with fresh hearts at day 7 were 64\%, 79\% and 68\%, whereas continuous fixation restored T\(_{2}\), T\(_{2}\)* and SNR leading to relative values of 74\%, 100\%, and 81\% at day 200, respectively. Relaxation parameters and diffusion metrics are significantly altered by continuous formalin fixation. The preservation of microstructure metrics following prolonged fixation is a key finding that may enable future studies of ventricular remodeling in cardiac pathologies.}, language = {en} } @article{BeyhoffLohrThieleetal.2020, author = {Beyhoff, Niklas and Lohr, David and Thiele, Arne and Foryst-Ludwig, Anna and Klopfleisch, Robert and Schreiber, Laura M. and Kintscher, Ulrich}, title = {Myocardial Infarction After High-Dose Catecholamine Application—A Case Report From an Experimental Imaging Study}, series = {Frontiers in Cardiovascular Medicine}, volume = {7}, journal = {Frontiers in Cardiovascular Medicine}, doi = {10.3389/fcvm.2020.580296}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217959}, year = {2020}, abstract = {Although heart failure following myocardial infarction (MI) represents a major health burden, underlying microstructural and functional changes remain incompletely understood. Here, we report on a case of unexpected MI after treatment with the catecholamine isoproterenol in an experimental imaging study in mice using different state-of-the-art imaging modalities. The decline in cardiac function was documented by ultrahigh-frequency echocardiography and speckle-tracking analyses. Myocardial microstructure was studied ex vivo at a spatial resolution of 100 × 100 × 100 μm\(^{3}\) using diffusion tensor magnetic resonance imaging (DT-MRI) and histopathologic analyses. Two weeks after ISO treatment, the animal showed an apical aneurysm accompanied by reduced radial strain in corresponding segments and impaired global systolic function. DT-MRI revealed a loss of contractile fiber tracts together with a disarray of remaining fibers as corresponding microstructural correlates. This preclinical case report provides valuable insights into pathophysiology and morphologic-functional relations of heart failure following MI using emerging imaging technologies.}, language = {en} }