@phdthesis{Weber2019, author = {Weber, Manuel}, title = {Action-based quantum Monte Carlo approach to fermion-boson models}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157643}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {This work deals with the development and application of novel quantum Monte Carlo methods to simulate fermion-boson models. Our developments are based on the path-integral formalism, where the bosonic degrees of freedom are integrated out exactly to obtain a retarded fermionic interaction. We give an overview of three methods that can be used to simulate retarded interactions. In particular, we develop a novel quantum Monte Carlo method with global directed-loop updates that solves the autocorrelation problem of previous approaches and scales linearly with system size. We demonstrate its efficiency for the Peierls transition in the Holstein model and discuss extensions to other fermion-boson models as well as spin-boson models. Furthermore, we show how with the help of generating functionals bosonic observables can be recovered directly from the Monte Carlo configurations. This includes estimators for the boson propagator, the fidelity susceptibility, and the specific heat of the Holstein model. The algorithmic developments of this work allow us to study the specific heat of the spinless Holstein model covering its entire parameter range. Its key features are explained from the single-particle spectral functions of electrons and phonons. In the adiabatic limit, the spectral properties are calculated exactly as a function of temperature using a classical Monte Carlo method and compared to results for the Su-Schrieffer-Heeger model.}, subject = {Monte-Carlo-Simulation}, language = {en} } @phdthesis{Michalke2004, author = {Michalke, Thordis}, title = {Elektronen-Korrelationen und Elektron-Phonon-Kopplung in einem nanostrukturierten Adsorbatsystem}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-11957}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {In meiner Arbeit werden die Auswirkungen von Vielteilcheneffekten in einem niedrigdimensionalen Adsorbatsystem untersucht. Ein solches System kann als einfaches Modellsystem zum Verst{\"a}ndnis der Vielteilcheneffekte dienen. Mit Hilfe der Photoelektronenspektroskopie und Rastertunnelspektroskopie kann die Lebensdauer der Quasiteilchen direkt gemessen werden. An quasi-nulldimensionalen Quantenpunkten l{\"a}sst sich außerdem der Einfluss der Dimensionalit{\"a}t und der Strukturgr{\"o}ße auf die Korrelationseffekte und Kopplungsst{\"a}rken der Elektronen messen. Das Adsorbatsystem Stickstoff auf Kupfer (Cu(100)c(2x2)N) ist hierf{\"u}r ideal geeignet. Bei der Adsorption von Stickstoff auf Cu(100) bilden sich auf Grund starker Verspannungen durch die inkommensurate c(2x2)-Bedeckung Stickstoff-Inseln mit einer typischen Gr{\"o}ße von 5x5 nm². Auf diesen quasi-nulldimensionalen Quantenpunkten l{\"a}sst sich lokal mit der Rastertunnelspektroskopie die elektronische Zustandsdichte messen. In den STS-Spektren und Bildern sind typische diskrete Eigenzust{\"a}nde eines Quantentrogs zu beobachten. Mit einem Modell ged{\"a}mpfter, quasifreier Elektronen ist es gelungen, diese Eigenzust{\"a}nde zu simulieren und wichtige physikalische Gr{\"o}ßen, wie die effektive Masse, die Bindungsenergie und die mittlere Lebensdauer der Elektronen in den Inseln zu bestimmen. Mit Hilfe der Photoelektronenspektroskopie k{\"o}nnen zahlreiche adsorbatinduzierte Zust{\"a}nde identifiziert und die zweidimensionale Bandstruktur des Adsorbatsystems gemessen werden. Die Elektron-Phonon-Kopplung spielt in dem Stickstoff-Adsorbatsystem eine wichtige Rolle: Temperaturabh{\"a}ngige Messungen der zweidimensionalen Zust{\"a}nde lassen auf eine sehr starke Kopplung schließen mit Werten bis zu 1,4 f{\"u}r die Kopplungskonstante. Dabei ist die Kopplungsst{\"a}rke wesentlich von der Lokalisierung der Adsorbatzust{\"a}nde abh{\"a}ngig. In der N{\"a}he der Fermikante zeigt ein Adsorbatzustand eine außergew{\"o}hnliche Linienform. Die Spektralfunktion kann selbst bei recht hohen Temperaturen von 150 K mit dem Realteil der Selbstenergie der Elektron-Phonon-Kopplung beschrieben werden. F{\"u}r die Phononenzustandsdichte wird dabei das Einstein-Modell verwendet auf Grund des dominierenden Anteils der adsorbatinduzierten optischen Phononen. Die Kopplungsst{\"a}rke und der Beitrag der Elektron-Elektron und Elektron-Defekt-Streuung werden aus diesen Daten extrahiert. Auf Grund der sehr starken Elektron-Phonon-Kopplung k{\"o}nnte man spekulieren, ob sich in der Oberfl{\"a}che Cooper-Paare bilden, deren Anziehung {\"u}ber ein optisches Adsorbatphonon vermittelt w{\"u}rde, und so eine exotische Oberfl{\"a}chen-Supraleitung verursachen.}, subject = {Adsorbat}, language = {de} } @phdthesis{Beyl2020, author = {Beyl, Stefan}, title = {Hybrid Quantum Monte Carlo for Condensed Matter Models}, doi = {10.25972/OPUS-19122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191225}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In this thesis we consider the hybrid quantum Monte Carlo method for simulations of the Hubbard and Su-Schrieffer-Heeger model. In the first instance, we discuss the hybrid quantum Monte Carlo method for the Hubbard model on a square lattice. We point out potential ergodicity issues and provide a way to circumvent them by a complexification of the method. Furthermore, we compare the efficiency of the hybrid quantum Monte Carlo method with a well established determinantal quantum Monte Carlo method for simulations of the half-filled Hubbard model on square lattices. One reason why the hybrid quantum Monte Carlo method loses the comparison is that we do not observe the desired sub-quadratic scaling of the numerical effort. Afterwards we present a formulation of the hybrid quantum Monte Carlo method for the Su-Schrieffer-Heeger model in two dimensions. Electron-phonon models like this are in general very hard to simulate using other Monte Carlo methods in more than one dimensions. It turns out that the hybrid quantum Monte Carlo method is much better suited for this model . We achieve favorable scaling properties and provide a proof of concept. Subsequently, we use the hybrid quantum Monte Carlo method to investigate the Su-Schrieffer-Heeger model in detail at half-filling in two dimensions. We present numerical data for staggered valence bond order at small phonon frequencies and an antiferromagnetic order at high frequencies. Due to an O(4) symmetry the antiferromagnetic order is connected to a superconducting charge density wave. Considering the Su-Schrieffer-Heeger model without tight-binding hopping reveals an additional unconstrained Z_2 gauge theory. In this case, we find indications for π-fluxes and a possible Z_2 Dirac deconfined phase as well as for a columnar valence bond ordered state at low phonon energies. In our investigations of the several phase transitions we discuss the different possibilities for the underlying mechanisms and reveal first insights into a rich phase diagram.}, subject = {Monte-Carlo-Simulation}, language = {en} }