@phdthesis{Klein2009, author = {Klein, Markus}, title = {Starke Korrelationen in Festk{\"o}rpern : von lokalisierten zu itineranten Elektronen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36459}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {In dieser Arbeit wurden mittels winkelaufgel{\"o}ster Photoemission verschiedene Verbindungen mit stark korrelierten Elektronen untersucht. Es wurde gezeigt, dass diese Technik einen direkten Zugang zu den niederenergetischen Wechselwirkungen bietet und dadurch wichtige Informationen {\"u}ber die Vielteilchenphysik dieser Systeme liefert. Die direkte Beobachtung der scharfen Quasiteilchenstrukturen in der N{\"a}he der Fermikante erm{\"o}glichte insbesondere die genaue Betrachtung der folgenden Punkte: 1. Quantenphasen{\"u}bergang: analog zu [27] wurde gezeigt, dass die hochaufgel{\"o}ste PES Zugriff auf die lokale Energieskala TK bietet. Außerdem konnte im Rahmen eines st{\"o}rungstheoretischen Modells allgemein gezeigt werden, wie sich kleine RKKY-St{\"o}rungen auf TK auswirken. Aus der experimentellen Entwicklung von TK(x) in CeCu6-xAux lassen sich mit Hilfe dieses Modells R{\"u}ckschl{\"u}sse auf den Quantenphasen{\"u}bergang bei T = 0 ziehen. 2. Kondogitter: mit Hilfe einer geordneten CePt5/Pt(111)-Oberfl{\"a}chenlegierung wurde demonstriert, dass mit ARPES Kondogittereffekte beobachtet werden k{\"o}nnen. Dazu z{\"a}hlen die Beobachtung von Hybridisierungsbandl{\"u}cken und der starken Renormierung der Bandmassen in der N{\"a}he von EF. Diese Effekte lassen sich, mit Hilfe unterschiedlicher Anregungsenergien und Messungen an einer isostrukturellen LaPt5-Schicht, eindeutig dem Resultat einer d f -Mischung der elektronischen Zust{\"a}nde zuweisen. Anhand von temperaturabh{\"a}ngigenMessungen konnte erstmals der {\"U}bergang von lokalisierten zu koh{\"a}renten Quasiteilchen in einem Kondosystem mittels ARPES beobachtet werden. 3. Phasen{\"u}berg{\"a}nge: bei FeSi und URu2Si2 wurde jeweils gezeigt, dass die ARPES sensitiv f{\"u}r kleinste {\"A}nderungen der elektronischen Struktur in unmittelbarer Umgebung der Fermienergie ist. Es konnten charakteristische Energien und Temperaturen, sowie am Phasen{\"u}bergang beteiligte B{\"a}nder und deren effektive Massen m* quantifiziert werden. Insbesondere wurde gezeigt, dass Heavy-Fermion-B{\"a}nder mit m* = 40 me eine wichtige Rolle beim Hidden-order-Phasen{\"u}bergang in URu2Si2 spielen. 4. Oberfl{\"a}cheneffekte: f{\"u}r alle Proben, außer CeCu6-xAux, musste festgestellt werden, dass Oberfl{\"a}chenzust{\"a}nde betr{\"a}chtliche Anteile am Spektrum besitzen k{\"o}nnen. Daher ist bei jedem Material gr{\"o}ßte Vorsicht bei der Pr{\"a}paration der Oberfl{\"a}che und der Interpretation der Spektren angebracht. Als eine geeignete Methode um Oberfl{\"a}chen und Volumenanteile auseinander zu halten, stellten sich anregungsenergieabh{\"a}ngige Messungen heraus. 5. theoretische Modelle: trotz der Bezeichnung "stark korrelierte Systeme", unterscheiden sich die untersuchten Verbindungen bez{\"u}glich ihrer theoretischen Beschreibung: die Physik der Cersysteme (CeCu6, CePt5/Pt(111)) ist bei T > TK durch lokale St{\"o}rstellen bestimmt und lassen sich somit im Rahmen des SIAM beschreiben. Bei tieferen Temperaturen T < TK treten jedoch Anzeichen von beginnender Koh{\"a}renz auf und geben somit den {\"U}bergang zum PAM wieder. Schwere, dispergierenden B{\"a}nder in URu2Si2 und FeSi zeigen, dass beide Systeme nur mit Hilfe eines geordneten Gitters beschreibbar sind. Insbesondere stellt sich f{\"u}r FeSi heraus, dass eine Erkl{\"a}rung im Kondoisolator-Bild falsch ist und ein Hubbard-Modell-Ansatz angebrachter scheint.}, subject = {Kondo-Effekt}, language = {de} }