@phdthesis{Then2017, author = {Then, Patrick}, title = {Waveguide-based single molecule detection in flow}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140548}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In this work fluorescence-based single molecule detection at low concetration is investigated, with an emphasis on the usage of active transport and waveguides. Active transport allows to overcome the limits of diffusion-based systems in terms of the lowest detectable threshold of concentration. The effect of flow in single molecule experiments is investigated and a theoretical model is derived for laminar flow. Waveguides on the other hand promise compact detection schemes and show great potential for their possible integration into lab-on-a-chip applications. Their properties in single molecule experiments are analyzed with help of a method based on the reciprocity theorem of electromagnetic theory.}, subject = {Optik}, language = {en} } @article{BeierleinEgorovHarderetal.2021, author = {Beierlein, J. and Egorov, O. A. and Harder, T. H. and Gagel, P. and Emmerling, M. and Schneider, C. and H{\"o}fling, S. and Peschel, U. and Klembt, S.}, title = {Bloch Oscillations of Hybrid Light-Matter Particles in a Waveguide Array}, series = {Advanced Optical Materials}, volume = {9}, journal = {Advanced Optical Materials}, number = {13}, doi = {10.1002/adom.202100126}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239814}, year = {2021}, abstract = {Bloch oscillations are a phenomenon well known from quantum mechanics where electrons in a lattice experience an oscillatory motion in the presence of an electric field gradient. Here, the authors report on Bloch oscillations of hybrid light-matter particles, called exciton-polaritons (polaritons), being confined in an array of coupled microcavity waveguides. To this end, the waveguide widths and their mutual couplings are carefully designed such that a constant energy gradient is induced perpendicular to the direction of motion of the propagating polaritons. This technique allows us to directly observe and study Bloch oscillations in real- and momentum-space. Furthermore, the experimental findings are supported by numerical simulations based on a modified Gross-Pitaevskii approach. This work provides an important transfer of basic concepts of quantum mechanics to integrated solid state devices, using quantum fluids of light.}, language = {en} }