@phdthesis{Albert2012, author = {Albert, Ferdinand}, title = {Vertikale und laterale Emissionseigenschaften von Halbleiter-Quantenpunkt-Mikroresonatoren im Regime der schwachen und starken Licht-Materie-Wechselwirkung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93016}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Licht-Materie-Wechselwirkung in Quantenpunkt-Mikroresonatoren und deren vertikalen und lateralen Emissionseigenschaften. Quantenpunkte sind nanoskopische Strukturen, in denen die Beweglichkeit der Ladungstr{\"a}ger unterhalb der de-Broglie-Wellenl{\"a}nge eingeschr{\"a}nkt ist, wodurch die elektronische Zustandsdichte diskrete Werte annimmt. Sie werden daher auch als k{\"u}nstliche Atome bezeichnet. Um die Emissionseigenschaften der Quantenpunkte zu modifizieren, werden sie im Rahmen dieser Arbeit als aktive Schicht in Mikros{\"a}ulenresonatoren eingebracht. Diese bestehen aus einer GaAs lambda-Kavit{\"a}t, die zwischen zwei Braggspiegeln aus alternierenden GaAs und AlAs Schichten eingefasst ist. Diese Resonatoren bieten sowohl eine vertikale Emission {\"u}ber Fabry-Perot Moden, als auch eine laterale Emission {\"u}ber Fl� ustergaleriemoden. Die Licht-Materie-Wechselwirkung zwischen den Resonatormoden und lokalisierten Ladungstr{\"a}gern in den Quantenpunkten, genannt Exzitonen, kann in zwei Regime unterteilt werden. Im Regime der starken Kopplung wird der spontane Emissionsprozess in einem Quantenpunkt reversibel und das emittierte Photon kann wieder durch den Quantenpunkt absorbiert werden. Die theoretische Beschreibung der Kopplung eines Exzitons an die Resonatormode erfolgt {\"u}ber das Jaynes-Cummings Modell und kann im Tavis-Cummings Modell auf mehrere Emitter erweitert werden. Ist die D{\"a}mpfung des Systems zu gross, so befindet man sich im Regime der schwachen Kopplung, in dem die Emissionsrate des Quantenpunkts durch den Purcell-Effekt erh{\"o}ht werden kann. In diesem Regime k{\"o}nnen Mikrolaser mit hohen Einkopplungsraten der spontanen Emission in die Resonatormode und niedrigen Schwellpumpstr{\"o}men realisiert werden. Zur Charakterisierung der Proben werden vor allem die Methoden der Mikro-Elektrolumineszenz und der Photonenkorrelationsmessungen eingesetzt.}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} } @phdthesis{Hoepfner2012, author = {H{\"o}pfner, Philipp Alexander}, title = {Two-Dimensional Electron Systems at Surfaces — Spin-Orbit Interaction and Electronic Correlations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78876}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {This thesis addresses three different realizations of a truly two-dimensional electron system (2DES), established at the surface of elemental semiconductors, i.e., Pt/Si(111), Au/Ge(111), and Sn/Si(111). Characteristic features of atomic structures at surfaces have been studied using scanning tunneling microscopy and low energy electron diffraction with special emphasis on Pt deposition onto Si(111). Topographic inspection reveals that Pt atoms agglomerate as trimers, which represent the structural building block of phase-slip domains. Surprisingly, each trimer is rotated by 30° with respect to the substrate, which results in an unexpected symmetry breaking. In turn, this represents a unique example of a chiral structure at a semiconductor surface, and marks Pt/Si(111) as a promising candidate for catalytic processes at the atomic scale. Spin-orbit interactions (SOIs) play a significant role at surfaces involving heavy adatoms. As a result, a lift of the spin degeneracy in the electronic states, termed as Rashba effect, may be observed. A candidate system to exhibit such physics is Au/Ge(111). Its large hexagonal Fermi sheet is suggested to be spin-split by calculations within the density functional theory. Experimental clarification is obtained by exploiting the unique capabilities of three-dimensional spin detection in spin- and angle-resolved photoelectron spectroscopy. Besides verification of the spin splitting, the in-plane components of the spin are shown to possess helical character, while also a prominent rotation out of this plane is observed along straight sections of the Fermi surface. Surprisingly and for the first time in a 2DES, additional in-plane rotations of the spin are revealed close to high symmetry directions. This complex spin pattern must originate from crystalline anisotropies, and it is best described by augmenting the original Rashba model with higher order Dresselhaus-like SOI terms. The alternative use of group-IV adatoms at a significantly reduced coverage drastically changes the basic properties of a 2DES. Electron localization is strongly enhanced, and the ground state characteristics will be dominated by correlation effects then. Sn/Si(111) is scrutinized with this regard. It serves as an ideal realization of a triangular lattice, that inherently suffers from spin frustration. Consequently, long-range magnetic order is prohibited, and the ground state is assumed to be either a spiral antiferromagnetic (AFM) insulator or a spin liquid. Here, the single-particle spectral function is utilized as a fundamental quantity to address the complex interplay of geometric frustration and electronic correlations. In particular, this is achieved by combining the complementary strengths of ab initio local density approximation (LDA) calculations, state-of-the-art angle-resolved photoelectron spectroscopy, and the sophisticated many-body LDA+DCA. In this way, the evolution of a shadow band and a band backfolding incompatible with a spiral AFM order are unveiled. Moreover, beyond nearest-neighbor hopping processes are crucial here, and the spectral features must be attributed to a collinear AFM ground state, contrary to common expectation for a frustrated spin lattice.}, subject = {Halbleiteroberfl{\"a}che}, language = {en} } @phdthesis{Mueller2012, author = {M{\"u}ller, Andreas}, title = {Towards functional oxide heterostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72478}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Oxide heterostructures attract a lot of attention as they display a vast range of physical phenomena like conductivity, magnetism, or even superconductivity. In most cases, these effects are caused by electron correlations and are therefore interesting for studying fundamental physics, but also in view of future applications. This thesis deals with the growth and characterization of several prototypical oxide heterostructures. Fe3O4 is highly ranked as a possible spin electrode in the field of spintronics. A suitable semiconductor for spin injection in combination with Fe3O4 is ZnO due to its oxide character and a sufficiently long spin coherence length. Fe3O4 has been grown successfully on ZnO using pulsed laser deposition and molecular beam epitaxy by choosing the oxygen partial pressure adequately. Here, a pressure variation during growth reduces an FeO-like interface layer. Fe3O4 films grow in an island-like growth mode and are structurally nearly fully relaxed, exhibiting the same lattice constants as the bulk materials. Despite the presence of a slight oxygen off-stoichiometry, indications of the Verwey transition hint at high-quality film properties. The overall magnetization of the films is reduced compared to bulk Fe3O4 and a slow magnetization behavior is observed, most probably due to defects like anti-phase boundaries originating from the initial island growth. LaAlO3/SrTiO3 heterostructures exhibit a conducting interface above a critical film thickness, which is most likely explained by an electronic reconstruction. In the corresponding model, the potential built-up owing to the polar LaAlO3 overlayer is compensated by a charge transfer from the film surface to the interface. The properties of these heterostructures strongly depend on the growth parameters. It is shown for the first time, that it is mainly the total pressure which determines the macroscopic sample properties, while it is the oxygen partial pressure which controls the amount of charge carriers near the interface. Oxygen-vacancy-mediated conductivity is found for too low oxygen pressures. A too high total pressure, however, destroys interface conductivity, most probably due to a change of the growth kinetics. Post-oxidation leads to a metastable state removing the arbitrariness in controlling the electronic interface properties by the oxygen pressure during growth. LaVO3/SrTiO3 heterostructures exhibit similar behavior compared to LaAlO3/SrTiO3 when it comes to a thickness-dependent metal-insulator transition. But in contrast to LaAlO3, LaVO3 is a Mott insulator exhibiting strong electron correlations. Films have been grown by pulsed laser deposition. Layer-by-layer growth and a phase-pure pervoskite lattice structure is observed, indicating good structural quality of the film and the interface. An electron-rich layer is found near the interface on the LaVO3 side for conducting LaVO3/SrTiO3. This could be explained by an electronic reconstruction within the film. The electrostatic doping results in a band-filling-controlled metal-insulator transition without suffering from chemical impurities, which is unavoidable in conventional doping experiments.}, subject = {Oxide}, language = {en} } @unpublished{Reiss2012, author = {Reiss, Harald}, title = {Time scales and existence of time holes in non-transparent media}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73554}, year = {2012}, abstract = {The analysis presented in this paper applies to experimental situations where observers or objects to be studied, all at stationary positions, are located in environments the optical thickness of which is strongly different. Non-transparent media comprise thin metallic films, packed or fluidised beds, superconductors, the Earth's crust, and even dark clouds and other cosmological objects. The analysis applies mapping functions that correlate physical events, e, in non-transparent media, with their images, f(e), tentatively located on standard physical time scale. The analysis demonstrates, however, that physical time, in its rigorous sense, does not exist under non-transparency conditions. A proof of this conclusion is attempted in three steps: i) the theorem "there is no time without space and events" is accepted, (ii) images f[e(s,t)] do not constitute a dense, uncountably infinite set, and (iii) sets of images that are not uncountably infinite do not create physical time but only time-like sequences. As a consequence, mapping f[e(s,t)] in non-transparent space does not create physical analogues to the mathematical structure of the ordered, dense half-set R+ of real numbers, and reverse mapping, f-1f[e(s,t)], the mathematical inverse problem, would not allow unique identification and reconstruction of original events from their images. In these cases, causality as well as invariance of physical processes under time reversal, might be violated. An interesting problem is whether temporal cloaking (a time hole) in a transparent medium, as very recently reported in the literature, can be explained by the present analysis. Existence of time holes could perhaps be possible, not in transparent but in non-transparent media, as follows from the sequence of images, f[e(s,t)], that is not uncountably infinite, in contrast to R+. Impacts are expected for understanding physical diffusion-like, radiative transfer processes and stability models to protect superconductors against quenchs. There might be impacts also in relativity, quantum mechanics, nuclear decay, or in systems close to their phase transitions. The analysis is not restricted to objects of laboratory dimensions.}, subject = {Zeitrichtung}, language = {en} } @article{TempelVeitAssmannetal.2012, author = {Tempel, Jean-Sebastian and Veit, Tempel and Assmann, Marc and Kreilkamp, Lars Erik and H{\"o}fling, Sven and Kamp, Martin and Forchel, Alfred and Bayer, Manfred}, title = {Temperature dependence of pulsed polariton lasing in a GaAs microcavity}, series = {New Journal of Physics}, volume = {14}, journal = {New Journal of Physics}, number = {083014}, doi = {10.1088/1367-2630/14/8/083014}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134022}, year = {2012}, abstract = {The second-order correlation function g\(^2\)(\(\tau\) = 0), input-output curves and pulse duration of the emission from a microcavity exciton-polariton system subsequent to picosecond-pulsed excitation are measured for different temperatures. At low temperatures a two-threshold behaviour emerges, which has been attributed to the onset of polariton lasing and conventional lasing at the first and the second threshold, respectively. We observe that polariton lasing is stable up to temperatures comparable with the exciton binding energy. At higher temperatures a single threshold displays the direct transition from thermal emission to photon lasing.}, language = {en} } @phdthesis{Wichmann2012, author = {Wichmann, Tobias}, title = {Spulen-Arrays mit bis zu 32 Empfangselementen f{\"u}r den Einsatz an klinischen NMR-Ger{\"a}ten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79358}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {In dieser Arbeit wurden f{\"u}r spezielle Anwendungen an klinischen MR-Ger{\"a}ten optimierte Phased-Array-Spulen entwickelt. Das Ziel war, durch die Verwendung neuer Spulen entweder neue Anwendungsgebiete f{\"u}r klinische MR-Ger{\"a}te zu er{\"o}ffnen oder bei bestehenden Applikationen die Diagnosem{\"o}glichkeiten durch eine Kombination von h{\"o}herem SNR und kleineren g-Faktoren im Vergleich zu bestehenden Spulen zu verbessern. In Kapitel 3 wurde untersucht, ob es durch den Einsatz neu entwickelter, dedizierter Kleintierspulen sinnvoll m{\"o}glich ist, Untersuchungen an Kleintieren an klinischen MR-Ger{\"a}ten mit einer Feldst{\"a}rke von 1,5T durchzuf{\"u}hren. Der Einsatz dieser Spulen verspricht dem klinischen Anwender Studien an Kleintieren durchf{\"u}hren zu k{\"o}nnen, bei denen er den gleichen Kontrast wie bei einer humanen Anwendung erh{\"a}lt und gleichzeitig Kontrastmittel sowie Sequenzen, die klinisch erprobt sind, einzusetzen. Durch die gew{\"a}hlten geometrischen Abmessungen der Spulen ist es m{\"o}glich, Zubeh{\"o}r von dedizierten Tier-MR-Ger{\"a}ten, wie z. B. Tierliegen oder EKG- bzw. Atemtriggereinheiten, zu verwenden. Durch Vorversuche an f{\"u}r Ratten dimensionierten Spulen wurden grundlegende Zusammenh{\"a}nge zwischen verwendetem Entkopplungsmechanismus und SNR bzw. Beschleunigungsf{\"a}higkeit erarbeitet. F{\"u}r Ratten wurde gezeigt, dass in akzeptablen Messzeiten von unter f{\"u}nf Minuten MR-Messungen des Abdomens in sehr guter Bildqualit{\"a}t m{\"o}glich sind. Ebenfalls gezeigt wurde die M{\"o}glichkeit durch den Einsatz von paralleler Bildgebung sowie Kontrastmitteln hochaufgel{\"o}ste Angiographien durchzuf{\"u}hren. Es stellte sich heraus, dass bei 1,5T dedizierte M{\"a}usespulen bei Raumtemperatur von den SNR-Eigenschaften am Limit des sinnvoll Machbaren sind. Trotzdem war es m{\"o}glich, auch f{\"u}r M{\"a}use ein 4-Kanal-Phased-Array zu entwickeln und den Einsatz bei kontrastmittelunterst{\"u}tzten Applikationen zu demonstrieren. Insgesamt wurde gezeigt, dass durch den Einsatz von speziellen, angepassten Kleintierspulen auch Tieruntersuchungen an klinischen MR-Ger{\"a}ten mit niedriger Feldst{\"a}rke durchf{\"u}hrbar sind. Obwohl sich die Bestimmung der Herzfunktion an MR-Ger{\"a}ten im klinischen Alltag zum Goldstandard entwickelt hat, ist die MR-Messung durch lange Atemanhaltezyklen f{\"u}r einen Herzpatienten sehr m{\"u}hsam. In Kapitel 4 wurde deswegen die Entwicklung einer 32-Kanal-Herzspule beschrieben, welche den Komfort f{\"u}r Patienten deutlich erh{\"o}hen kann. Schon mit einem ersten Prototypen f{\"u}r 3T war es m{\"o}glich, erstmals Echtzeitbildgebung mit leicht reduzierter zeitlicher Aufl{\"o}sung durchzuf{\"u}hren und damit auf das Atemanhalten komplett zu verzichten. Dies erm{\"o}glicht den Zugang neuer Patientengruppen, z. B. mit Arrythmien, zu MR-Untersuchungen. Durch eine weitere Optimierung des Designs wurde das SNR sowie das Beschleunigungsverm{\"o}gen signifikant gesteigert. Bei einem Beschleunigungsfaktor R = 5 in einer Richtung erh{\"a}lt man z. B. gemittelt {\"u}ber das gesamte Herz ein ca. 60 \% gesteigertes SNR zu dem Prototypen. Die Kombination dieser Spule zusammen mit neuentwicklelten Methoden wie z. B. Compressed- Sensing stellt es in Aussicht, die Herzfunktion zuk{\"u}nftig in der klinischen Routine in Echtzeit quantifizieren zu k{\"o}nnen. In Kapitel 5 wurde die Entwicklung einer optimierten Brustspulen f{\"u}r 3T beschrieben. Bei Vorversuchen bei 1,5T wurden Vergleiche zwischen der Standardspule der Firma Siemens Healthcare und einem 16-Kanal-Prototypen durchgef{\"u}hrt. Trotz gr{\"o}ßerem Spulenvolumen zeigt die Neuentwicklung sowohl hinsichtlich SNR als auch paralleler Bildgebungseigenschaften eine signifikante Verbesserung gegen{\"u}ber der Standardspule. Durch die Einhaltung aller Kriterien f{\"u}r Medizinprodukte kann diese Spule auch f{\"u}r den klinischen Einsatz verwendet werden. Mit den verbesserten Eigenschaften ist es beispielsweise m{\"o}glich, bei gleicher Messdauer eine h{\"o}here Aufl{\"o}sung zu erreichen. Aufgrund des intrinsischen SNR-Vorteils der 3 T-Spule gegen{\"u}ber der 1,5 T-Spule ist es dort sogar m{\"o}glich, bei h{\"o}heren Beschleunigungsfaktoren klinisch verwertbare Schnittbilder zu erzeugen. Zusammenfassend wurden f{\"u}r alle drei Applikationen NMR-Empfangsspulen entwickelt, die im Vergleich zu den bisher verf{\"u}gbaren Spulen, hinsichtlich SNR und Beschleunigungsverm{\"o}gen optimiert sind und dem Anwender neue M{\"o}glichkeiten bieten.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Bentmann2012, author = {Bentmann, Hendrik}, title = {Spin-Bahn-Kopplung in Grenzschichten: Mikroskopische Zusammenh{\"a}nge und Strategien zur Manipulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76963}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die vorliegende Arbeit befasst sich mit dem Einfluss der Spin-Bahn-Kopplung (SBK) auf die zweidimensionale elektronische Struktur von Festk{\"o}rperoberfl{\"a}chen und -grenzfl{\"a}chen. Aufgrund der strukturellen Inversionsasymmetrie kann die SBK in derartigen Systemen eine Spinaufspaltung der elektronischen Zust{\"a}nde herbeif{\"u}hren und eine charakteristische impulsabh{\"a}ngige Spinstruktur induzieren (Rashba-Effekt). Die Studien in dieser Arbeit sind zum einen darauf gerichtet, das physikalische Verst{\"a}ndnis der mikroskopischen Zusammenh{\"a}nge, die die Spinaufspaltung und die Spinorientierung elektronischer Zust{\"a}nde an Grenzfl{\"a}chen bestimmen, zu verbessern. Des Weiteren sollen M{\"o}glichkeiten zur Manipulation der SBK durch kontrollierte Variationen chemischer und struktureller Grenzfl{\"a}chenparameter erforscht werden. Als Modellsysteme f{\"u}r diese Fragestellungen dienen die isostrukturellen Oberfl{\"a}chenlegierungen BiCu2 und BiAg2, deren elektronische Struktur mittels winkelaufgel{\"o}ster Photoelektronenspektroskopie (ARPES) und spinaufgel{\"o}ster ARPES untersucht wird. Die Resultate der Experimente werden mithilfe von ab initio-Rechnungen und einfacheren Modellbetrachtungen interpretiert. Die Arbeit schließt mit einer ausblickenden Pr{\"a}sentation von Experimenten zu dem topologischen Isolator Bi2Se3(0001). Vergleichende ARPES-Messungen zu BiAg2/Ag(111) und BiCu2/Cu(111) zeigen, dass bereits geringe Unterschiede in der Grenzschichtmorphologie die Gr{\"o}ße der Spinaufspaltung in der elektronischen Struktur um ein Vielfaches ver{\"a}ndern k{\"o}nnen. Zudem belegen spinaufgel{\"o}ste Experimente eine invertierte Spinorientierung der elektronischen Zust{\"a}nde in BiCu2 im Vergleich mit dem Referenzsystem Au(111). Beide Resultate k{\"o}nnen durch eine theoretische Analyse des Potentialprofils und der elektronischen Ladungsverteilung senkrecht zu der Grenzfl{\"a}che in Kombination mit einfachen Modellbetrachtungen verstanden werden. Es stellt sich heraus, dass Asymmetrien in der Ladungsverteilung das direkte mikroskopische Bindeglied zwischen der Spinstruktur des elektronischen Systems und den strukturellen und chemischen Parametern der Grenzschicht bilden. Weitergehende ARPES-Experimente zeigen, dass die spinabh{\"a}ngige elektronische Struktur zudem signifikant durch die Symmetrie des Potentials parallel zu der Grenzfl{\"a}chenebene beeinflusst wird. Eine Manipulation der SBK wird in BiCu2 durch die Deposition von Adatomen erreicht. Hierdurch gelingt es, die Spinaufspaltung sowohl zu vergr{\"o}ßern (Na-Adsorption) als auch zu verringern (Xe-Adsorption). ARPES-Experimente an dem tern{\"a}ren Schichtsystem BiAg2/Ag/Au(111) belegen erstmalig eine Kopplung zwischen elektronischen B{\"a}ndern mit entgegengesetztem Spincharakter in einem zweidimensionalen System mit Spinaufspaltung (Interband-Spin-Bahn-Kopplung). Der zugrundeliegende Kopplungsmechanismus steht in bemerkenswerter Analogie zu den Auswirkungen der SBK auf die spinpolarisierte elektronische Struktur in ferromagnetischen Systemen. Variationen in der Schichtdicke des Ag-Substratfilms erlauben es, die St{\"a}rke der Interband-SBK zu manipulieren.}, subject = {Spin-Bahn-Wechselwirkung}, language = {de} } @phdthesis{Shuvaev2012, author = {Shuvaev, Alexey}, title = {Spectroscopic study of manganites with magnetoelectric coupling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78719}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {The present thesis is devoted to the spectroscopic study of rare earth manganites RMnO3 (R = Gd, Dy, Tb, Eu(1 - x)Y(x)) in the submillimeter frequency range. A dynamic manifestation of a strong magnetoelectric coupling in these systems is the existence of electromagnons - spin waves excited by the electric component of the electromagnetic wave. The exact analytical solution of the Landau-Lifshitz equations obtained for cycloidal antiferromagnets builds the bridge between the inelastic neutron scattering and the optical experiments. A semi-quantitative agreement is achieved between the theory and the results by these two experimental techniques. Two suggested mechanisms of the magnetoelectric coupling, the inverse Dzyaloshinskii-Moriya (IDM) interaction and the symmetric Heisenberg exchange (HE) striction, are introduced in a perturbative manner. The qualitative conclusions regarding both static and dynamic electric properties are also in agreement with the experiment. GdMnO3 is the system in which the electromagnons were first detected at low frequencies. Far infrared measurements in GdMnO3 presented here have confirmed the existence of a second high frequency electromagnon at 75 reciprocal centimeter. The detection of an additional mode suggests the existence of at least short range ferroelectric order. Such order has not been observed in static experiments so far. The electromagnons in Eu(1 - x)Y(x)MnO3 helped to clarify the role of the rare earth magnetism. As the Y(3+) ions are diamagnetic and Eu(3+) ions possess Van Vleck paramagnetism only, it is the Mn subsystem that is primarily responsible for the magnetoelectric properties of rare earth manganites. The electromagnons in DyMnO3 and TbMnO3 do not change their excitation conditions upon the flop of the spin cycloid in external magnetic fields. This fact still lacks consistent theoretical explanation. Detailed measurements on TbMnO3 of different orientations have allowed to prove the existence of the IDM electromagnon. The study of DyMnO3 in external magnetic fields has shown that, depending on the Dy ordering, the electromagnons and static electric polarization can be either enhanced or suppressed. Thus, the magnetic order of rare earth moments still plays an important role. As a general result of the present work, the IDM interaction is capable to describe the static electric polarization and the weak electro-active excitation in the high-field phase of TbMnO3. The HE model is successful in explaining the high frequency electromagnon, including its excitation conditions and the spectral weight. However, both models are still unable to describe the energy and the spectral weight of the low frequency electromagnon. Further theoretical and experimental efforts are required in this direction.}, subject = {Manganverbindungen}, language = {en} } @article{AadAbbottAbdallahetal.2012, author = {Aad, G. and Abbott, B. and Abdallah, J. and Abdel Khalek, S. and Abdelalim, A. A.}, title = {Search for the Standard Model Higgs boson in the H→WW(⋆)→ℓνℓνH→WW(⋆)→ℓνℓν decay mode with 4.7 fb\(^{-1}\) of ATLAS data at \(\sqrt{s}\)=7 TeV}, series = {Physics Letters B}, volume = {761}, journal = {Physics Letters B}, number = {1}, organization = {ATLAS Collaboration}, doi = {10.1016/j.physletb.2012.08.010}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127307}, pages = {62-81}, year = {2012}, abstract = {A search for the Standard Model Higgs boson in the H→WW(⋆)→ℓνℓνH→WW(⋆)→ℓνℓν (ℓ=e,μℓ=e,μ) decay mode is presented. The search is performed using proton-proton collision data corresponding to an integrated luminosity of 4.7 fb\(^{-1}\) at a centre-of-mass energy of 7 TeV collected during 2011 with the ATLAS detector at the Large Hadron Collider. No significant excess of events over the expected background is observed. An upper bound is placed on the Higgs boson production cross section as a function of its mass. A Standard Model Higgs boson with mass in the range between 133 GeV and 261 GeV is excluded at 95\% confidence level, while the expected exclusion range is from 127 GeV to 233 GeV.}, language = {en} } @phdthesis{Hoelscher2012, author = {H{\"o}lscher, Uvo Christoph}, title = {Relaxations-Dispersions-Bildgebung in der Magnetresonanztomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79554}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Das Ziel dieser Promotion ist der Aufbau eines dreMR Setups f{\"u}r einen klinischen 1,5T Scanner, das die Relaxations-Dispersions-Bildgebung erm{\"o}glicht, und die anschließende Ergr{\"u}ndung von m{\"o}glichst vielen Anwendungsfeldern von dreMR. Zu der Aufgabe geh{\"o}rt die Bereitstellung der zugrunde liegenden Theorie, der Bau des experimentellen Setups (Offset-Spule und Stromversorgung) sowie die Programmierung der n{\"o}tigen Software. Mit dem gebauten Setup konnten zwei große Anwendungsfelder — dreMR Messungen mit und ohne Kontrastmitteln — untersucht werden.}, subject = {Kernspintomografie}, language = {de} } @unpublished{Reiss2012, author = {Reiss, Harald}, title = {Physical time and existence of time holes in non-transparent media}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67268}, year = {2012}, abstract = {The analysis presented in this paper applies to experimental situations where observers or objects to be studied (both stationary, with respect to each other) are located in environments the optical thickness of which is strongly different. By their large optical thickness, non-transparent media are clearly distinguished from their transparent counterparts. Non-transparent media comprise thin metallic films, packed or fluidised beds, the Earth's crust, and even dark clouds and other cosmological objects. As a representative example, a non-transparent slab is subjected to transient disturbances, and a rigorous analysis is presented whether physical time reasonably could be constructed under such condition. The analysis incorporates mapping functions that correlate physical events, e, in non-transparent media, with their images, f(e), tentatively located on a standard physical time scale. The analysis demonstrates, however, that physical time, in its rigorous sense, does not exist under non-transparency conditions. A proof of this conclusion is attempted in three steps: i) the theorem "there is no time without space and events" is accepted, (ii) images f[e(s,t)] do not constitute a dense, uncountably infinite set, and (iii) sets of images that are not uncountably infinite do not create physical time but only time-like sequences. As a consequence, mapping f[e(s,t)] in non-transparent space does not create physical analogues to the mathematical structure of the ordered, dense half-set R+ of real numbers, and reverse mapping, f-1f[e(s,t)] would not allow unique identification and reconstruction of original events from their images. In these cases, causality and determinism, as well as invariance of physical processes under time reversal, might be violated. Existence of time holes could be possible, as follows from the sequence of images, f[e(s,t)], that is not uncountably infinite, in contrast to R+. Practical impacts are expected for understanding physical diffusion-like, radiative transfer processes, stability models to protect superconductors against quenchs or for description of their transient local pair density and critical currents. Impacts would be expected also in mathematical formulations (differential equations) of classical physics, in relativity and perhaps in quantum mechanics, all as far as transient processes in non-transparent space would be concerned. An interesting problem is whether temporal cloaking (a time hole) in a transparent medium, as very recently reported in the literature, can be explained by the present analysis. The analysis is not restricted to objects of laboratory dimensions: Because of obviously existing radiation transfer analogues, it is tempting to discuss consequences also for much larger structures in particular if an origin of time is postulated.}, subject = {Strahlungstransport}, language = {en} } @phdthesis{Muench2012, author = {M{\"u}nch, Steffen}, title = {Photolumineszenz-Spektroskopie an niederdimensionalen Halbleiterstrukturen auf III-V-Basis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74104}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit optischen Untersuchungen an niederdimensionalen III/V-Halbleiterstrukturen. Dabei werden zun{\"a}chst im ersten Teil selbst-organisiert gewachsene Nanodr{\"a}hte aus InP und GaN bez{\"u}glich ihrer Oberfl{\"a}chen- und Kristallqualit{\"a}t charakterisiert. Dies ist besonders im Hinblick auf zuk{\"u}nftige opto- und nanoelektronische Bauteile von Interesse. Der zweite, grundlagenorientierte Teil der Arbeit ist im Bereich der Quantenoptik angesiedelt und widmet sich magneto-optischen Studien zur Licht-Materie Wechselwirkung in Quantenpunkt-Mikroresonator-Systemen im Regime der starken Kopplung. Oberfl{\"a}chen-Untersuchungen an Halbleiter-Nanodr{\"a}hten Bei diesem Teilaspekt der vorliegenden Arbeit stehen Untersuchungen von Halbleiter-Nanodr{\"a}hten mittels zeitintegrierter und zeitaufgel{\"o}ster Photolumineszenz (PL)-Spektroskopie im Vordergrund. Diese eindimensionalen Nanostrukturen bieten eine vielversprechende Perspektive f{\"u}r die weitere Miniaturisierung in der Mikroelektronik. Da konventionelle Strukturierungsverfahren wie die optische Lithographie zunehmend an physikalische und technologische Grenzen stoßen, sind selbstorganisierte Wachstumsprozesse hierbei von besonderem Interesse. Bei Nanodr{\"a}hten besteht dar{\"u}ber hinaus konkret noch die M{\"o}glichkeit, {\"u}ber ein gezieltes axiales und radiales Wachstum von Heterostrukturen bereits bei der Herstellung komplexere Funktionalit{\"a}ten einzubauen. Auf Grund ihres großen Oberfl{\"a}che-zu-Volumen Verh{\"a}ltnisses sind die elektronischen und optischen Eigenschaften der Nanodr{\"a}hte extrem oberfl{\"a}chensensitiv, was vor allem im Hinblick auf zuk{\"u}nftige Anwendungen im Bereich der Mikro- oder Optoelektronik sowie der Sensorik von essentieller Bedeutung ist. Zur n{\"a}heren Untersuchung der Oberfl{\"a}cheneigenschaften von Nanodr{\"a}hten eignet sich die optische Spektroskopie besonders, da sie als nicht-invasive Messmethode ohne aufw{\"a}ndige Probenpr{\"a}paration schnell n{\"u}tzliche Informationen liefert, die zum Beispiel in der Optimierung des Herstellungsprozesses eingesetzt werden k{\"o}nnen. Quantenoptik an Halbleiter-Mikrokavit{\"a}ten Der zweite Teil dieser Arbeit widmet sich der Licht-Materie-Wechselwirkung in Quantenpunkt-Mikroresonator-Systemen. Dabei ist das Regime der starken Kopplung zwischen Emitter und Resonator, auch im Hinblick auf m{\"o}gliche zuk{\"u}nftige Anwendungen in der Quanteninformationsverarbeitung, von besonderem Interesse. Diese Mikroresonator-T{\"u}rmchen, die auf planaren AlAs/GaAs-Mikroresonatoren mit InGaAs Quantenpunkten in der aktiven Schicht basieren, wurden mittels zeitintegrierter und zeitaufgel{\"o}ster Mikro-PL-Spektroskopie in einem {\"a}ußeren magnetischen Feld in Faraday-Konfiguration untersucht. Grundlegende Untersuchungen von Quantenpunkten im Magnetfeld Zun{\"a}chst wurden InxGa(1-x)As-Quantenpunkte mit unterschiedlichem In-Gehalt (x=30\%, 45\% und 60\%) magneto-optisch untersucht. Aufgrund der gr{\"o}ßeren Abmessungen weisen die Quantenpunkte mit 30\% In-Anteil auch hohe Oszillatorst{\"a}rken auf, was sie besonders f{\"u}r Experimente zur starken Kopplung auszeichnet. Unter dem Einfluss des Magnetfeldes zeigte sich ein direkter Zusammenhang zwischen der lateralen Ausdehnung der Quantenpunkte und ihrer diamagnetischen Verschiebung. Starke Kopplung im magnetischen Feld Neben der M{\"o}glichkeit, das Resonanzverhalten {\"u}ber das externe Magnetfeld zu kontrollieren, zeigte sich eine Korrelation zwischen der Kopplungsst{\"a}rke und dem magnetischen Feld, was auf eine Verringerung der Oszillatorst{\"a}rke im Magnetfeld zur{\"u}ckgef{\"u}hrt werden konnte. Diese steht wiederum im Zusammenhang mit einer Einschn{\"u}rung der Wellenfunktion des Exzitons durch das angelegte Feld. Dieser direkte Einfluss des Magnetfeldes auf die Oszillatorst{\"a}rke erlaubt eine in situ Variation der Kopplungsst{\"a}rke. Photon-Photon-Wechselwirkung bei der starken Kopplung im Magnetfeld Nach der Demonstration der starken Kopplung zwischen entarteten Exziton- und Resonatormoden im Magnetfeld, wurden im weiteren Verlauf Spin-bezogene Kopplungseffekte im Regime der starken Kopplung untersucht. Es ergaben sich im Magnetfeld unter Variation der Temperatur zwei Bereiche der Wechselwirkung zwischen den einzelnen Komponenten von Resonator- und Exzitonenmode. Von besonderem Interesse ist dabei eine beobachtete indirekte Wechselwirkung zwischen den beiden photonischen Moden im Moment der Resonanz, die durch die exzitonische Mode vermittelt wird. Diese sogenannte Spin-vermittelte Photon-Photon-Kopplung stellt ein Bindeglied zwischen eigentlich unabh{\"a}ngigen photonischen Moden {\"u}ber den Spinzustand eines Exzitons dar.}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} } @phdthesis{Mingebach2012, author = {Mingebach, Markus Harald}, title = {Photocurrent in Organic Solar Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73569}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {A quite new approach to low-cost mass production of flexible solar cells are organic photovoltaics. Even though the device efficiencies increased rapidly during the last years, further imporvements are essential for a successful market launch. One important factor influencing the device efficiency is the photocurrent of a solar cell, which is defined as the difference between the current under illumination and in the dark. In case of organic bulk heterojunction (BHJ) solar cells it is — in contrast to inorganic devices — dependent on the applied bias voltage. The voltage dependence results in a reduced fill factor and thus an even more pronounced influence of the photocurrent on the device efficiency. It is therefore crucial to understand the underlying processes determining the photocurrent in order to be able to further improve the solar cell performance. In a first step the photocurrent of P3HT:PC61BM devices was investigated by a pulsed measurement technique in order to prevent disturbing influences due to device heating under continous illumination. The resulting photocurrent was hyperbolic tangent like and featured a point symmetry, whose origin and meaning were discussed. In addition, the photocurrent was described by a combined model of Braun-Onsager and Sokel-Hughes theory for field dependent polaron pair dissociation and charge extraction, respectively. After this macroscopic view on the photocurrent, the focus of this work moves to the more basic processes determining the photocurrent: charge photogeneration and recombination. In a comparative study the field-dependence of these was investigated by time-delayed collection field (TDCF) measurements for two well-known reference systems, namely P3HT:PC61BM and MDMO-PPV:PC61BM. It was possible to identify two different dominating scenarios for the generation of free charge carriers. The first one — via a thermalized charge transfer state (CTS) — is clearly influenced by geminate recombination and therefore less efficient. In the second scenario, the free charge carriers are either generated directly or via an excited, "hot" CTS. In addition, clear differences in the nongeminate recombination dynamics of both material systems were found. Similar studies were also be presented with two modern low bandgap polymers which only differ by the bridging atom in the cyclopentadithiophene (PCPDTBT:PC71BM vs. Si-PCPDTBT:PC71BM). Such small changes in the chemical structure were already sufficient to affect the charge photogeneration as well as the morphology of the blend. These findings were set into relation to current-voltage characteristics in order to discuss the origin of the clear differences in the solar cell performance of both materials. Another crucial parameter limiting the solar cell efficiency is the builtin potential of a device. Within the range of semiconducting pn-junctions, Mott-Schottky analysis is an established method to determine the built-in potential. As it was originally derived for abrupt pn-junctions, its validity for organic BHJ solar cells — a bipolar, effective medium — was discussed. Experimental findings as well as the contradictions to Mott-Schottky theory indicated, that a direct transfer of this method to organic photovoltaics is not appropriate. Finally, the results obtained in the framework of the MOPS-project (Massengedruckte Organische Papier-Solarzellen) will be presented, in which the first completely roll-to-roll printed paper solar cells were realized.}, subject = {Organische Solarzelle}, language = {en} } @article{MargapotiAlvesMahapatraetal.2012, author = {Margapoti, E. and Alves, F. M. and Mahapatra, S. and Lopez-Richard, V. and Worschech, L. and Brunner, K. and Qu, F. and Destefani, C. and Menendez-Proupin, E. and Bougerol, C. and Forchel, A. and Marques, G. E.}, title = {Paramagnetic shift in thermally annealed Cd\(_x\)Zn\(_{1-x}\)Se quantum dots}, series = {New Journal of Physics}, volume = {14}, journal = {New Journal of Physics}, number = {043038}, doi = {10.1088/1367-2630/14/4/043038}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133294}, year = {2012}, abstract = {The photoluminescence of annealed Cd\(_x\)Zn\(_{1-x}\)Se quantum dots (QDs) under the influence of an external magnetic field has been studied in this paper. Post-growth annealing was performed for different annealing times. Above a critical annealing time, the QD luminescence shows a pronounced red-shift of the Zeeman split magnetic subcomponents. This observation is in contrast to the blue-shift caused by the diamagnetic behavior that is usually observed in non-magnetic QDs. We attribute our finding to the paramagnetism caused by the mixing of heavy and light hole states. Hence, post-growth thermal annealing treatment might be employed to render undoped epitaxial QDs intrinsically magnetic in a controlled manner. Two theoretical models were developed: a few-particle model to account for excitonic complex effects and a multiband calculation that describes the valence band hybridization. Contrasting the two models allowed us to unambiguously elucidate the nature of such an effect.}, language = {en} } @phdthesis{Huggenberger2012, author = {Huggenberger, Alexander}, title = {Optimierung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78031}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit der Herstellung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren. Dazu wurden systematisch die optischen Eigenschaften - insbesondere die Linienbreite und die Feinstrukturaufspaltung der Emission einzelner Quantenpunkte - optimiert. Diese Optimierung erfolgt im Hinblick auf die Verwendung der Quantenpunkte in Lichtquellen zur Realisierung einer Daten{\"u}bertragung, die durch Quantenkryptographie abh{\"o}rsicher verschl{\"u}sselt wird. Ein gekoppeltes Halbleitersystem aus einem Mikroresonator und einem Quantenpunkt kann zur Herstellung von Einzelphotonenquellen oder Quellen verschr{\"a}nkter Photonen verwendet werden. In dieser Arbeit konnten positionierte Quantenpunkte skalierbar in Halbleiter-Mikroresonatoren integriert werden. In(Ga)As-Quantenpunkte auf GaAs sind ein h{\"a}ufig untersuchtes System und k{\"o}nnen heutzutage mit hoher Kristallqualit{\"a}t durch Molekularstrahlepitaxie hergestellt werden. Um die Emission der Quantenpunkte gerichtet erfolgen zu lassen und die Auskoppeleffizienz der Bauteile zu erh{\"o}hen, wurden Mikros{\"a}ulenresonatoren oder photonische Kristallresonatoren eingesetzt. Die Integration in diese Resonatoren erfolgt durch Ausrichtung an Referenzstrukturen, wodurch dieses Verfahren skalierbar. Die Strukturierung der Substrate f{\"u}r die Herstellung von positionierten Quantenpunkten wurde durch optische Lithographie und Elektronenstrahllithographie in Kombination mit unterschiedlichen {\"A}tztechniken erreicht. F{\"u}r den praktischen Einsatz solcher Strukturen wurde ein Kontaktierungsschema f{\"u}r den elektrischen Betrieb entwickelt. Zur Verbesserung der optischen Eigenschaften der positionierten Quantenpunkte wurde ein Wachstumsschema verwendet, das aus einer optisch nicht aktiven In(Ga)As-Schicht und einer optisch aktiven Quantenpunktschicht besteht. F{\"u}r die Integration einzelner Quantenpunkte in Halbleiter-Mikroresonatoren wurden positionierte Quantenpunkte auf einem quadratischen Gitter mit einer Periode von 200 nm bis zu 10 mum realisiert. Eine wichtige Kenngr{\"o}ße der Emission einzelner Quantenpunkte ist deren Linienbreite. Bei positionierten Quantenpunkten ist diese h{\"a}ufig aufgrund spektraler Diffusion gr{\"o}ßer als bei selbstorganisierten Quantenpunkten. Im Verlauf dieser Arbeit wurden unterschiedliche Ans{\"a}tze und Strategien zur {\"U}berwindung dieses Effekts verfolgt. Dabei konnte ein minimaler Wert von 25 mueV f{\"u}r die Linienbreite eines positionierten Quantenpunktes auf einem quadratischen Gitter mit einer Periode von 2 μm erzielt werden. Die statistische Auswertung vieler Quantenpunktlinien ergab eine mittlere Linienbreite von 133 mueV. Die beiden Ergebnisse zeugen davon, dass diese Quantenpunkte eine hohe optische Qualit{\"a}t besitzen. Die FSS der Emission eines Quantenpunktes sollte f{\"u}r die direkte Erzeugung polarisationsverschr{\"a}nkter Photonen m{\"o}glichst klein sein. Deswegen wurden unterschiedliche Ans{\"a}tze diskutiert, um die FSS einer m{\"o}glichst großen Zahl von Quantenpunkten systematisch zu reduzieren. Die FSS der Emission von positionierten In(Ga)As-Quantenpunkten auf (100)-orientiertem Galliumarsenid konnte auf einen minimalen Wert von 9.8 mueV optimiert werden. Ein anderes Konzept zur Herstellung positionierter Quantenpunkte stellt das Wachstum von InAs in ge{\"a}tzten, invertierten Pyramiden in (111)-GaAs dar In (111)- und (211)-In(Ga)As sollte aufgrund der speziellen Symmetrie des Kristalls bzw. der piezoelektrischen Felder die FSS verschwinden. Mit Hilfe von Quantenpunkten auf solchen Hochindex-Substraten konnten FSS von weniger als 5 mueV gemessen werden. Bis zu einem gewissen Grad kann die Emission einzelner Quantenpunkte durch laterale elektrische Felder beeinflusst werden. Besonders die beobachtete Reduzierung der FSS positionierter In(Ga)As-Quantenpunkte auf (100)-orientiertem GaAs von ca. 25 mueV auf 15 mueV durch ein laterales, elektrisches Feld ist viel versprechend f{\"u}r den k{\"u}nftigen Einsatz solcher Quantenpunkte in Quellen f{\"u}r verschr{\"a}nkte Photonen. Durch die Messung der Korrelationsfunktion wurde die zeitliche Korrelation der Emission von Exziton und Biexziton nachgewiesen und das Grundprinzip zum Nachweis eines polarisationsverschr{\"a}nkten Zustandes gezeigt. In Zusammenarbeit mit der Universit{\"a}t Tokyo wurde ein Konzept entwickelt, mit dem k{\"u}nftig Einzelquantenpunktlaser skalierbar durch Kopplung positionierter Quantenpunkte und photonischer Kristallkavit{\"a}ten hergestellt werden k{\"o}nnen. Weiterhin konnte mit Hilfe eines elektrisch kontaktierten Mikros{\"a}ulenresonators bei spektraler Resonanz von Quantenpunktemission und Kavit{\"a}tsmode eine Steigerung der spontanen Emission nachgewiesen werden. Dieses System ließ sich bei geeigneten Anregungsbedingungen auch als Einzelphotonenquelle betreiben, was durch den experimentell bestimmten Wert der Autokorrelationsfunktion f{\"u}r verschwindende Zeitdifferenzen nachgewiesen wurde.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Blumenstein2012, author = {Blumenstein, Christian}, title = {One-Dimensional Electron Liquid at a Surface: Gold Nanowires on Ge(001)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72801}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Selbstorganisierte Nanodr{\"a}hte auf Halbleiteroberfl{\"a}chen erm{\"o}glichen die Untersuchung von Elektronen in niedrigen Dimensionen. Interessanterweise werden die elektronischen Eigenschaften des Systems von dessen Dimensionalit{\"a}t bestimmt, und das noch {\"u}ber das Quasiteilchenbild hinaus. Das quasi-eindimensionale (1D) Regime zeichnet sich durch eine schwache laterale Kopplung zwischen den Ketten aus und erm{\"o}glicht die Ausbildung einer Peierls Instabilit{\"a}t. Durch eine Nesting Bedingung in der Fermi Fl{\"a}che kommt es zu einer Bandr{\"u}ckfaltung und damit zu einem isolierenden Grundzustand. Dies wird begleitet von einer neuen {\"U}berstruktur im Realraum, die mit dem Nestingvektor korrespondiert. In fr{\"u}heren Nanodrahtsystemen wurde ein solcher Effekt gezeigt. Dazu geh ̈oren Indium Ketten auf Si(111) und die Gold rekonstruierten Substrate Si(553) und Si(557). Die Theorie sagt jedoch einen weiteren Zustand voraus, der nur im perfekten 1D Grenzfall existiert und der bei geringster Kopplung mit h{\"o}heren Dimensionen zerst{\"o}rt wird. Dieser Zustand wird Tomonaga-Luttinger Fl{\"u}ssigkeit (TLL) genannt und f{\"u}hrt zu einem Zusammenbruch des Quasiteilchenbildes der Fermi-Fl{\"u}ssigkeit. Hier sind nur noch kollektive Anregungen der Elektronen erlaubt, da die starke laterale Einschr{\"a}nkung zu einer erh{\"o}hten Kopplung zwischen den Teilchen f{\"u}hrt. Dadurch treten interessante Effekte wie Spin-Ladungs-Trennung auf, bei dem sich die Ladung und der Spin eines Elektrons entkoppeln und getrennt voneinander durch den Nanodraht bewegen k{\"o}nnen. Bis heute wurde solch ein seltener Zustand noch nicht an einer Oberfl{\"a}che beobachtet. In dieser Arbeit wird ein neuer Ansatz zur Herstellung von besser definierten 1D Ketten gew{\"a}hlt. Dazu wird die Au-rekonstruierte Ge(001) Nanodraht-Oberfl{\"a}che untersucht. F{\"u}r die Pr{\"a}paration des Substrates wird ein neues Rezept entwickelt, welches eine langreichweitig geordnete Oberfl{\"a}che erzeugt. Um das Wachstum der Nanodr{\"a}hte zu optimieren wird das Wachstums-Phasendiagramm ausgiebig untersucht. Außerdem werden die strukturellen Bausteine der Ketten sehr genau beschrieben. Es ist bemerkenswert, dass ein struktureller Phasen{\"u}bergang der Ketten oberhalb von Raumtemperatur gefunden wird. Aufgrund von spektroskopischen Untersuchungen kann eine Peierls Instabilit{\"a}t als Ursache ausgeschlossen werden. Es handelt sich um einen 3D-Ising-Typ {\"U}bergang an dem das Substrat ebenfalls beteiligt ist. Die Untersuchungen zur elektronischen Struktur der Ketten zeigen zwei deutliche Erkennungsmerkmale einer TLL: Ein potenzgesetzartiger Verlauf der Zustandsdichte und universales Skalenverhalten. Daher wird zum ersten Mal eine TLL an einer Oberfl{\"a}che nachgewiesen, was nun gezielt lokale Untersuchungen und Manipulationen erm{\"o}glicht. Dazu geh{\"o}ren (i) Dotierung mit Alkalimetallen, (ii) die Untersuchung von Kettenenden und (iii) die einstellbare Kopplung zwischen den Ketten durch zus{\"a}tzliche Goldatome. Damit wird ein wichtiger Beitrag zu theoretischen Vorhersagen und Modellen geliefert und somit das Verst{\"a}ndnis korrelierter Elektronen vorangetrieben.}, subject = {Nanodraht}, language = {en} } @phdthesis{Meyer2012, author = {Meyer, Jochen}, title = {Muon performance aspects and measurement of the inclusive ZZ production cross section through the four lepton final state with the ATLAS experiment at the LHC}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78793}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {The "Large Hadron Collider" (LHC) is currently the most powerful particle accelerator. It provides particle collisions at a center of mass energy in the Tera-electronvolt range, which had never been reached in a laboratory before. Thereby a new era in high energy particle physics has began. Now it is possible to test one of the most precise theories in physics, the Standard Model of particle physics, at these high energies. The purpose is particularly served by four large experiments installed at the LHC, namely "A Toroidal LHC ApparatuS" (ATLAS), the "Compact-Muon-Solenoid" (CMS), the "Large Hadron Collider beauty" (LHCb) and "A Large Ion Collider Experiment" (ALICE). Besides exploring the high energy behavior of the well-established portions of the Standard Model, one of the main objectives is to find the Higgs boson included in the model, but not discovered by any preceding effort. It is of tremendous importance since fermions and heavy electroweak gauge bosons acquire mass because of this boson. Although the success of the Standard Model in describing nature is already undisputed, there are some flaws due to observations inexplicable within this theory only. Therefore searches for physics beyond the Standard Model are promoted at the LHC experiments as well. In order to achieve the defined goals, crucial aspects are firstly precise measurements, to verify Standard Model predictions in detail, and secondly an evaluation of as much information as accessible by the detectors, to recognize new phenomena as soon as possible for subsequent optimizations. Both challenges are only possible with a superior understanding of the detectors. An inevitable contribution to attain this knowledge is a realistic simulation, partially requiring new implementation techniques to describe the very complex instrumentation. The research presented here is performed under the patronage of the ATLAS collaboration with a special focus on measurements done with muon spectrometer. Thus a first central issue is the performance of the spectrometer in terms of physics objects that are recognized by the device, the compatibility of data and the existing simulation as well as its improvement and finally the extension of the acceptance region. Once the excellent behavior and comprehension of the muon spectrometer is demonstrated, a second part addresses one physics use case of reconstructed muons. The electroweak force is part of the Standard Model and causes the interaction of heavy electroweak gauge bosons with fermions as well as their self-interaction. In proton-proton collisions such gauge bosons are produced. However, they decay immediately into a pair of fermions. In case of the Z boson, which is one of the gauge bosons, oppositely charged fermions of the same generation, including muons, emerge. The various decay modes are determined precisely at particle accelerators other than the LHC. However, the associated production of two Z bosons is measured less exactly at those facilities because of a very low cross section. The corresponding results acquired with the ATLAS experiment exceed all previous measurements in terms of statistics and accuracy. They are reported in this thesis as obtained from the observation of events with four charged leptons. The enhancement of the signal yield based on the extension of the muon spectrometer acceptance is especially emphasized as well as alternative methods to estimate background events. Furthermore, the impact on the probing of couplings of three Z bosons and intersection with the search for the Standard Model Higgs boson are pointed out.}, subject = {ATLAS }, language = {en} } @article{WildMarshallBocketal.2012, author = {Wild, J. M. and Marshall, H. and Bock, M. and Schad, L. R. and Jakob, P. M. and Puderbach, M. and Molinari, F. and Van Beek, E. J. R. and Biederer, J.}, title = {MRI of the lung (1/3): methods}, series = {Insights into Imaging}, volume = {3}, journal = {Insights into Imaging}, number = {4}, doi = {10.1007/s13244-012-0176-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124238}, pages = {345-353}, year = {2012}, abstract = {Proton magnetic resonance imaging (MRI) has recently emerged as a clinical tool to image the lungs. This paper outlines the current technical aspects of MRI pulse sequences, radiofrequency (RF) coils and MRI system requirements needed for imaging the pulmonary parenchyma and vasculature. Lung MRI techniques are presented as a "technical toolkit", from which MR protocols will be composed in the subsequent papers for comprehensive imaging of lung disease and function (parts 2 and 3). This paper is pitched at MR scientists, technicians and radiologists who are interested in understanding and establishing lung MRI methods. Images from a 1.5 T scanner are used for illustration of the sequences and methods that are highlighted. Main Messages • Outline of the hardware and pulse sequence requirements for proton lung MRI • Overview of pulse sequences for lung parenchyma, vascular and functional imaging with protons • Demonstration of the pulse-sequence building blocks for clinical lung MRI protocols}, language = {en} } @phdthesis{Buettner2012, author = {B{\"u}ttner, Bastian}, title = {Micromagnetic Sensors and Dirac Fermions in HgTe Heterostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72556}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Within the scope of this thesis two main topics have been investigated: the examination of micromagnetic sensors and transport of massive and massless Dirac fermions in HgTe quantum wells. For the investigation of localized, inhomogeneous magnetic fields, the fabrication and characterization of two different non-invasive and ultra sensitive sensors has been established at the chair "Experimentelle Physik" of the University of W{\"u}rzburg. The first sensor is based on the young technique named micro-Hall magnetometry. The necessary semiconductor devices (Hall cross structures) were fabricated by high-resolution electron beam lithography based on two different two dimensional electron gases (2DEGs), namely InAs/(Al,Ga)Sb- and HgTe/(Hg,Cd)Te- heterostructures. The characteristics have been examined in two different ways. Measurements in homogeneous magnetic fields served for characterization of the sensors, whereas the investigation of artificially produced sub-µm magnets substantiates the suitability of the devices for the study of novel nanoscale magnetic materials (e.g. nanowires). Systematic experiments with various magnets are in accordance with the theory of single-domain particles and anisotropic behavior due to shapes with high aspect ratio. The highest sensitivity for strongly localized fields was obtained at T = 4.2 K for a (200x200) nm^2 Hall cross - made from shallow, high mobility HgTe 2DEG. Although the field resolution was merely δB ≈ 100 µT, the nanoscale sensor size yields an outstanding flux resolution of δΦ = 2 10^(-3) Φ0, where Φ0 = h/2e is the flux quantum. Translating this result in terms of magnetic moment, the sensitivity allows for the detection of magnetization changes of a particle centered on top of the sensor as low as δM ≈ 10^2 µB, with the magnetic moment of a single electron µB, the Bohr magneton. The further examination of a permalloy nanomagnet with a cross-section of (100x20) nm^2 confirms the expected resolution ability, extracted from the noise of the sensor. The observed high signal-to-noise ratio validates the detection limit of this sensor in terms of geometry. This would be reached for a magnet (same material) with quadratic cross-section for an edge length of 3.3 nm. Moreover, the feasibility of this sensor for operation in a wide temperature range (T = mK... > 200 K) and high magnetic fields has been confirmed. The second micromagnetic sensor is the micro-SQUID (micro-Superconducting-QUantum-Interference-Device) based on niobium. The typical sensor area of the devices built in this work was (1.0x1.0) µm^2, with constrictions of about 20 nm. The characterization of this device demonstrates an amazing field sensitivity (regarding its size) of δB < 1 µT. Even though the sensor was 25 times larger than the best micro-Hall sensor, it provided an excellent flux resolution in the order of δΦ ≈ 5 10^(-4) Φ0 and a similar magnetic moment resolution of δM ≈ 10^2 µB. Furthermore, the introduction of an ellipsoidal permalloy magnet (axes: 200 nm and 400 nm, thickness 30 nm) substantiates the suitability for the detection of minuscule, localized magnetic fields. The second part of the thesis deals with the peculiar transport properties of HgTe quantum wells. These rely on the linear contribution to the band structure inherent to the heterostructure. Therefore the system can be described by an effective Dirac Hamiltonian, whose Dirac mass is tunable by the variation of the quantum well thickness. By fabrication and characterization of a systematical series of substrates, a system with vanishing Dirac mass (zero energy gap) has been confirmed. This heterostructure therefore resembles graphene (a monolayer of graphite), with the difference of exhibiting only one valley in the energy dispersion of the Brillouin zone. Thus parasitical intervalley scattering cannot occur. The existence of this system has been proven by the agreement of theoretical predictions, based on widely accepted band structure calculations with the experiment (Landau level dispersion, conductivity). Furthermore, another particularity of the band structure - the transition from linear to parabolic character - has been illustrated by the widths of the plateaus in the quantum Hall effect. Finally, the transport of "massive" Dirac fermions (with finite Dirac mass) is investigated. In particular the describing Dirac Hamiltonian induces weak localization effects depending on the Dirac mass. This mechanism has not been observed to date, and survives in higher temperatures compared to typical localization mechanisms.}, subject = {Magnetischer Sensor}, language = {en} } @phdthesis{Rydzek2012, author = {Rydzek, Matthias}, title = {Infrarot-optische, elektrische und strukturelle Charakteristika spektralselektiver Funktionsschichten auf der Basis dotierter Metalloxide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71504}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Optisch transparente und elektrisch leitf{\"a}hige Funktionsschichten auf der Basis dotierter Metalloxid-Halbleiter spielen eine bedeutende Rolle als w{\"a}rmestrahlungsreflektierende Schichten in der modernen Architektur. {\"U}ber die im Material vorhandenen freien Ladungstr{\"a}ger wird eine kollektive Anregung im infraroten Spektralbereich erm{\"o}glicht, die zu einem Anstieg der Reflektivit{\"a}t der Metalloxidschicht f{\"u}hrt. Dies geht einher mit einer Reduktion der W{\"a}rmeabstrahlung der Funktionsschicht. Die Motivation der vorliegenden Dissertation lag in der Herstellung, sowie in einer umfassenden Analyse der infrarot-optischen, elektrischen und strukturellen Charakteristika von nasschemisch abgeschiedenen Funktionsschichten auf Basis von Zinn-dotiertem Indiumoxid und Aluminium-dotiertem Zinkoxid. Die Pr{\"a}misse war hierbei, dass die Funktionsschichten einen m{\"o}glichst hohen Reflexionsgrad, respektive einen geringen thermischen Emissionsgrad im infraroten Spektralbereich aufweisen. Im Rahmen der Arbeit wurden deshalb vorrangig die Einfl{\"u}sse der Sol-Parameter und der Art der Probenpr{\"a}paration auf die infrarot-optischen Schichteigenschaften hin untersucht. Hierbei hat sich gezeigt, dass es verschiedene M{\"o}glichkeiten gibt, die Eigenschaften der Funktionsschichten im infraroten Spektralbereich zu beeinflussen. Dies kann einerseits bereits bei der Herstellung der Beschichtungsl{\"o}sungen {\"u}ber eine Variation von Parametern wie dem Grad der Dotierung bzw. der Konzentration des Sols erfolgen. Andererseits lassen sich gew{\"u}nschte infrarot-optische Schichteigenschaften direkt {\"u}ber eine Anpassung der Kristallisationstemperaturen unter Zuhilfenahme geeigneter oxidierender und reduzierender Prozessgase einstellen. Im Verlauf der Optimierung der Probenpr{\"a}paration konnte zudem gezeigt werden, dass eine Variation der Anzahl der Funktionsschichten und die damit verbundene Ver{\"a}nderung der Schichtdicke maßgebliche Einfl{\"u}sse auf die infrarot-optischen Eigenschaften hat. Die umfassende optische Charakterisierung der optimierten Proben vom UV {\"u}ber den sichtbaren Spektralbereich bis hin zum IR ergab, dass der Gesamtemissionsgrad eines Glassubstrats durch die Aufbringung eines Mehrschichtsystems deutlich gesenkt werden kann, wobei sich die visuelle Transparenz nur geringf{\"u}gig {\"a}ndert. Im Falle des verwendeten Indium-Zinn-Oxids gen{\"u}gt eine vierfache Beschichtung mit einer Dicke von rund 450 nm, um den Emissionsgrad von unbeschichtetem Glas (0.89) auf unter 0.20 zu senken, wobei die visuelle Transparenz mit 0.85 nur um rund 6 \% abnimmt. Bei Aluminium-Zink-Oxid ergibt sich ein Optimum mit einer rund 1 µm dicken Beschichtung, bestehend aus 11 Einzelschichten, die den Emissionsgrad der Oberfl{\"a}che auf unter 0.40 senkt. Die optische Transparenz liegt hierbei mit 0.88 nur geringf{\"u}gig unter dem unbeschichteten Glas mit einem Wert von 0.91. Neben der ausf{\"u}hrlichen Charakterisierung der Einfl{\"u}sse auf die IR-optischen Schichteigenschaften lag der Fokus der Arbeit auf der Analyse der strukturellen und elektrischen Eigenschaften der optimierten Proben. Mittels REM- und AFM-Aufnahmen konnten Einblicke in die Schichtstruktur und Oberfl{\"a}chenbeschaffenheit der erzeugten Funktionsschichten gewonnen werden. Es hat sich gezeigt, dass bedingt durch dicht beieinanderliegende Kristallite eine geringe Porosit{\"a}t innerhalb der Funktionsschicht entsteht, wodurch eine relativ hohe elektrische Leitf{\"a}higkeit gew{\"a}hrleistet ist. Dabei resultiert eine homogene Oberfl{\"a}chenstruktur mit einer geringen Oberfl{\"a}chenrauheit. Die Homogenit{\"a}t der Funktionsschichten, speziell im Hinblick auf eine gleichm{\"a}ßige Verteilung der maßgeblichen Atome, wurde mit Hilfe von SNMS- Messungen und einem EDX-Element-Mapping verifiziert. Mit Hilfe der Analyse des spezifischen Widerstands der optimierten Funktionsschichten konnte ein Zusammenhang zwischen den infrarot-optischen und elektrischen Schichteigenschaften {\"u}ber die Hagen-Rubens Relation erarbeitet werden. Dar{\"u}ber hinaus wurden an den besten, infrarot-optisch optimierten Proben charakteristische Parameter wie die Bandl{\"u}ckenenergie, die Ladungstr{\"a}gerdichte und die Ladungstr{\"a}gerbeweglichkeit ermittelt. {\"U}ber die Ladungstr{\"a}gerdichte war es zudem m{\"o}glich, die spektrale Lage der Plasmawellenl{\"a}nge zu bestimmen. Basierend auf den ermittelten Werten der optimierten Metalloxidschichten im Bereich der elektronischen Charakterisierung konnte eine Korrelation der infrarot-optischen und elektrischen Schichteigenschaften anhand charakteristischer Punkte im Spektrum der Funktionsschichten erarbeitet werden. Abschließend wurde der Verlauf des spektralen Reflexionsgrads theoretisch modelliert und {\"u}ber eine Parametervariation an den tats{\"a}chlich gemessenen Reflexionsgrad der infrarot-optisch optimierten Proben angefittet. Hierbei zeigte sich eine gute {\"U}bereinstimmung der in den physikalischen Grundlagen der vorliegenden Arbeit getroffenen Annahmen mit den experimentell ermittelten Werten.}, subject = {Metalloxide}, language = {de} }