@phdthesis{Winterfeldt2006, author = {Winterfeldt, Carsten}, title = {Generation and control of high-harmonic radiation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-20309}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {High-harmonic generation provides a powerful source of ultrashort coherent radiation in the XUV and soft-x-ray range, which also allows for the production of attosecond light pulses. Based on the unique properties of this new radiation it is now possible to perform time-resolved spectroscopy at high excitation energies, from which a wide field of seminal discoveries can be expected. Since the exploration and observation of the corresponding processes in turn are accompanied by the desire to control them, this work deals with new ways to manipulate and characterize the properties of these high-harmonic-based soft-x-ray pulses. After introductory remarks this work first presents a comprehensive overview over recent developments and achievements on the field of the control of high-harmonic radiation in order to classify the experimental results obtained in this work. These results include the control of high-harmonic radiation both by temporally shaping and by manipulating the spatial properties of the fundamental laser pulses. In addition, the influence of the conversion medium and of the setup geometry (gas jet, gas-filled hollow fiber) was investigated. Using adaptive temporal pulse shaping of the driving laser pulse by a deformable mirror, this work demonstrates the complete control over the XUV spectrum of high harmonics. Based on a closed-loop optimization setup incorporating an evolutionary algorithm, it is possible to generate arbitrarily shaped spectra of coherent soft-x-ray radiation in a gas-filled hollow fiber. Both the enhancement and suppression of narrowband high-harmonic emission in a selected wavelength region as well as the enhancement of coherent soft-x-ray radiation over a selectable extended range of harmonics (multiple harmonics) can be achieved. Since simulations that do not take into account spatial properties such as propagation effects inside a hollow fiber cannot reproduce the experimentally observed high contrast ratios between adjacent harmonics, a feedback-controlled adaptive two-dimensional spatial pulse shaper was set up to examine selective fiber mode excitation and the optimization of high-harmonic radiation in such a geometry. It is demonstrated that different fiber modes contribute to harmonic generation and make the high extent of control possible. These results resolve the long-standing issue about the controllability of high-harmonic generation in free-focusing geometries such as gas jets as compared to geometries where the laser is guided. Temporal pulse shaping alone is not sufficient. It was possible to extend the cutoff position of harmonics generated in a gas jet, however, selectivity cannot be achieved. The modifications of the high-harmonic spectrum have direct implications for the time structure of the harmonic radiation, including the possibility for temporal pulse shaping on an attosecond time scale. To this end, known methods for the temporal characterization of optical pulses and high-harmonic pulses (determination of the harmonic chirp on femtosecond and attosecond time scales) were introduced. The experimental progress in this work comprises the demonstration of different setups that are in principle suitable to determine the time structure of shaped harmonic pulses based on two-photon two-color ionization cross-correlation techniques. Photoelectron spectra of different noble gases generated by photoionization with high-harmonic radiation reproduce the spin-orbit splitting of the valence electrons and prove the satisfactory resolution of our electron time-of-flight spectrometer for the temporal characterization of high harmonics. Unfortunately no positive results for this part could be achieved so far, which can probably be attributed mainly to the lack of the focusability of the high harmonics and to the low available power of our laser system. However, we have shown that shaping the high-harmonic radiation in the spectral domain must result in modifications of the time structure on an attosecond time scale. Therefore this constitutes the first steps towards building an attosecond pulse shaper in the soft-x-ray domain. Together with the ultrashort time resolution, high harmonics open great possibilities in the field of time-resolved soft-x-ray spectroscopy, for example of inner-shell transitions. Tailored high-harmonic spectra as generated in this work and shaped attosecond pulses will represent a multifunctional toolbox for this kind of research.}, subject = {Frequenzvervielfachung}, language = {en} } @phdthesis{Walter2006, author = {Walter, Dominik}, title = {Adaptive Control of Ultrashort Laser Pulses for High-Harmonic Generation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-21975}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {The generation of high harmonics is an ideal method to convert frequencies of the infrared- or visible range into the soft x-ray range. This process demands high laser intensities that are nowadays supplied by femtosecond laser systems. As the temporal and spatial coherence properties of the laser are transferred during the conversion process, the generated high harmonics will propagate as a beam with high peak-brightness. Under ideal conditions the generation of soft-x-ray pulses shorter than one femtosecond is possible. These properties are exploited in many applications like time-resolved x-ray spectroscopy. The topic of this thesis is the generation and optimization of high harmonics. A variety of conversion setups is investigated (jet of noble gas atoms, gas-filled hollow-fiber, water microdroplets) and theoretical models present ideas to further enhance the conversion efficiency (using excited atoms or aligned molecules). In different setups the peak intensity of the fundamental laser pulses is increased by spectral broadening and subsequent temporal compression. This is achieved with the help of pulse shaping devices that can modify the spectral phase and therefore also the temporal intensity distribution of laser pulses. These pulse shaping devices are controlled by an evolutionary algorithm. With this setup not only adaptive compression of laser pulses is possible, but also the engineering of specific laser pulse shapes to optimize an experimental output. This setup was used to influence the process of high harmonic generation. It is demonstrated that the spectral distribution of the generated soft-x-ray radiation can be controlled by temporal pulse shaping. This method to tailor high harmonics is complemented by spatial shaping techniques. These findings demonstrate the realization of a tunable source of soft-x-ray radiation.}, subject = {Frequenzvervielfachung}, language = {en} }