@phdthesis{Jung2016, author = {Jung, Lisa Anna}, title = {Targeting MYC Function as a Strategy for Tumor Therapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146993}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {A large fraction of human tumors exhibits aberrant expression of the oncoprotein MYC. As a transcription factor regulating various cellular processes, MYC is also crucially involved in normal development. Direct targeting of MYC has been a major challenge for molecular cancer drug discovery. The proof of principle that its inhibition is nevertheless feasible came from in vivo studies using a dominant-negative allele of MYC termed OmoMYC. Systemic expression of OmoMYC triggered long-term tumor regression with mild and fully reversible side effects on normal tissues. In this study, OmoMYC's mode of action was investigated combining methods of structural biology and functional genomics to elucidate how it is able to preferentially affect oncogenic functions of MYC. The crystal structure of the OmoMYC homodimer, both in the free and the E-box-bound state, was determined, which revealed that OmoMYC forms a stable homodimer, and as such, recognizes DNA via the same base-specific DNA contacts as the MYC/MAX heterodimer. OmoMYC binds DNA with an equally high affinity as MYC/MAX complexes. RNA-sequencing showed that OmoMYC blunts both MYC-dependent transcriptional activation and repression. Genome-wide DNA-binding studies using chromatin immunoprecipitation followed by high-throughput sequencing revealed that OmoMYC competes with MYC/MAX complexes on chromatin, thereby reducing their occupancy at consensus DNA binding sites. The most prominent decrease in MYC binding was seen at low-affinity promoters, which were invaded by MYC at oncogenic levels. Strikingly, gene set enrichment analyses using OmoMYC-regulated genes enabled the identification of tumor subgroups with high MYC levels in multiple tumor entities. Together with a targeted shRNA screen, this identified novel targets for the eradication of MYC-driven tumors, such as ATAD3A, BOP1, and ADRM1. In summary, the findings suggest that OmoMYC specifically inhibits tumor cell growth by attenuating the expression of rate-limiting proteins in cellular processes that respond to elevated levels of MYC protein using a DNA-competitive mechanism. This opens up novel strategies to target oncogenic MYC functions for tumor therapy.}, subject = {Myc}, language = {en} } @incollection{LutzCantoreggiVelic1993, author = {Lutz, Werner K. and Cantoreggi, S. and Velic, I.}, title = {DNA binding and stimulation of cell division in the carcinogenicity of styrene 7,8-oxide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71597}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1993}, abstract = {[7-3H)Styrene 7,8-oxide was administered by oral gavage to male CD rats at a dose of 1.3 mg/kg. After 4 h, the forestomach was excised, DNA was isolated, purified to constant specific radioactivity and degraded nzymatically to the 3 '-nucleotides. Highperformance liquid chromatography fractions with the normal nucleotides contained most of the radiolabel, but a minute level of adduct label was also detccted. Using the units of the covalent binding index (micromoles adduct per mole DNA nucleotide)/(millimole chemical administered per kilogram body weight), a DNA binding potency of 1.0 was derived. A comparison of the covalent binding indices and carcinogenic potencies of other genotoxic forestarnach carcinogens showed that the tumorigenic activity of styrene oxide is unlikely to be purely genotoxic. Therefore, styrene oxide was compared with 3-tbutylhydroxyanisole (BHA) with respect to stimulation of cell proliferation in the forestomach. Male Fischer 344 rats were treated for four weeks at three dose levels of styrene oxide (0, 137, 275 and 550 mg/kg, three times per week by oral gavage) and BHA (0, 0.5, 1 and 2\% in the diet); the highest doses had been reported to result in 84\% and 22\% carcinomas in the forestomach, respectively. Cell proliferation was assessed by incorporation of bromodeoxyuridine into DNA and immunohistochemical analysis. An increase in the lablling indexwas found in a11 treated animals. In the prefundic region of the forestomach, the labeHing index increased significantly, from 42\% (controls) to 54\% with styrene oxide and from 41 to 55\% with BHA. Rats treated with BHA also had severe hyperplastic lesions in the prefundic region, i.e., at the location of BHA-induced forestomach carcinomas. The number of cells per millimetre of section length was increased up to 19 fold. Hyperplastic lesions were not seen with styrene oxide, despite the higher tumour incidence reported with this compound. We conclude that the carcinogenicity of styrene oxide to the forestomach most probably involves a mechanism in which marginal genotoxicity is combined with promotion by increased cell proliferation.}, subject = {Styrol}, language = {en} }