@phdthesis{Hansjakob2012, author = {Hansjakob, Anton}, title = {The role of cuticular waxes in the prepenetration processes of Blumeria graminis f.sp. hordei}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72840}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Der obligat biotrophe Pilz Blumeria graminis f.sp. hordei gilt als Erreger des Gerstenmehltaus, einer destruktiven Erkrankung der Gerste (Hordeum vulgare). Als Folge des Befalls mit B. graminis f.sp. hordei drohen erhebliche Ernteeinbußen. Das kutikul{\"a}re Wachs von Gerstenbl{\"a}ttern besteht haupts{\"a}chlich aus prim{\"a}ren Alkoholen (80\%), Alkylestern (10\%) sowie aus geringf{\"u}gig vorkommenden Bestandteilen wie Fetts{\"a}uren (2\%), Alkanen (2\%) und Aldehyden (1\%). Der initiale Kontakt der asexuellen und durch die Luft verbreiteten Konidien findet auf der Blattoberfl{\"a}che in einer Umgebung statt, die von den kutikul{\"a}ren Wachsen bestimmt ist, welche Keimung und Differenzierung stimulieren. W{\"a}hrend der Keimungs- und Differenzierungsphase durchlaufen die Konidien eine sequenzielle Morphogenese, die so genannten Pr{\"a}penetrationsprozesse. Dabei bilden die Konidien auf der Pflanzenoberfl{\"a}che zun{\"a}chst einen prim{\"a}ren, kurzen und im weiteren Verlauf einen sekund{\"a}ren, elongierten Keimschlauch aus. Im Anschluss daran schwillt dieser an und wird letztlich zu einem septierten Appressorium differenziert. Mit Hilfe des Appressoriums dringt der Pilz dann in die Epidermiszelle der Wirtspflanze ein und bildet ein initiales Haustorium, das die Ern{\"a}hrung des Pilzes sicherstellt. Um den Einfluss von einzelnen Wachsbestandteilen der Wirtspflanze auf die Pr{\"a}penetrationsprozesse systematisch zu untersuchen wurde ein neues in vitro System auf der Basis von Formvar®-Harz etabliert. Dieses System erm{\"o}glicht die Erzeugung homogener Oberfl{\"a}chen als Substrate f{\"u}r den Pilz, bei denen sowohl die aufgelagerten Mengen als auch die Oberfl{\"a}chenhydrophobizit{\"a}t unabh{\"a}ngig von den getesteten Substanzklassen und Kettenl{\"a}ngen der Molek{\"u}le hochgradig reproduzierbar sind. In diesem System haben langkettige Aldehyde die Keimung und die Differenzierung von B. graminis f.sp. hordei Konidien am wirksamsten induziert, wobei die Raten der Appressorienbildung in Abh{\"a}ngigkeit von der Konzentration und der Kettenl{\"a}nge im Vergleich zu n-Hexacosanal (C26), das sich als am effektivsten zeigte, abnahmen (C22<C28>>C30). Die getesteten gerad- und ungeradzahligen Alkane (C24-C33), Fetts{\"a}uren (C20-C28), Alkylester (C40-C44) und prim{\"a}ren Alkohole (C20-C30) hatten keinen signifikanten Einfluss auf die Keimung und die Appressorienbildung des Pilzes. Der prim{\"a}re Alkohol n-Hexacosanol (C26) stellte hierbei eine Ausnahme dar, da er die Keimung und die Bildung des Appressorium-Keimschlauchs signifikant erh{\"o}hte. Um die Rolle von langkettigen Aldehyden auf einer intakten Pflanzenoberfl{\"a}che in vivo genauer zu untersuchen wurden B. graminis f.sp. hordei Konidien auf Bl{\"a}tter von glossy11 Mutanten der Nicht-Wirtspflanze Mais (Zea mays) inokuliert. Anders als der Wildtyp weisen glossy11 Bl{\"a}tter keine langkettigen Aldehyde auf. Auf glossy11 Bl{\"a}ttern keimten 60\% der B. graminis f.sp. hordei Konidien nicht und nur 10\% der Konidien entwickelten ein reifes Appressorium, was einer dreimal geringeren Rate als auf Wildtyp-Bl{\"a}ttern entspricht. Durch das Bespr{\"u}hen von glossy11 Bl{\"a}tter mit synthetischem n-Hexacosanal oder mit Wachs des Wildtyps wurden die pilzlichen Pr{\"a}penetrationsprozesse wieder vollst{\"a}ndig durchlaufen. Wurden im Gegensatz dazu Bl{\"a}tter des Mais-Wildtyps mit nicht induzierenden n-Alkanen, prim{\"a}ren Alkoholen oder langkettigen Fetts{\"a}uren bespr{\"u}ht, konnte das den Aldehyd-defizienten Ph{\"a}notyp von glossy11 imitieren. W{\"a}hrend der Pr{\"a}penetrationsprozesse wird ein Appressorium gebildet, wobei es sich hierbei um eine neu gebildete Zelle handelt. Die Keimung und die anschließende Morphogenese sind wichtige Schritte in der Etablierung der pilzlichen Infektionsstrukturen. Da diese Prozesse in einigen phytopathogenen Pilzen mit dem Zellzyklus gekoppelt sind wurde untersucht, inwieweit die Pr{\"a}penetrationsprozesse von B. graminis f.sp. hordei mit dem Verlauf des Zellzykluses synchronisiert sind. Hierf{\"u}r wurde eine Methode basierend auf DAPI (4,6-diamidino-2-phenylindole) zur F{\"a}rbung der Zellkerne f{\"u}r fixierte Pr{\"a}parate von B. graminis f.sp. hordei Konidien entwickelt. Mittels eines pharmakologischen Ansatzes war es auf diese Weise erstmals m{\"o}glich die Abh{\"a}ngigkeit der Pr{\"a}penetrationsprozesse von der Mitose in vivo und in vitro zu verfolgen. Sechs Stunden nach der Inokulation trat nach Ausbildung des Appressorium-Keimschlauchs eine Mitose in der einkernigen Konidie auf. Die Hemmung der S-Phase mit Hydroxyharnstoff oder die Hemmung der M-Phase mit Benomyl verhinderten eine Bildung des Appressoriums, nicht aber die Entwicklung des Appressorium-Keimschlauchs. Diese Ergebnisse weisen darauf hin, dass die Mitose und eine abgeschlossene Zytokinese notwendige Voraussetzungen f{\"u}r die Appressoriumsbildung, jedoch nicht f{\"u}r die Morphogenese der Konidie, sind. Als Reaktion auf bestimmte Wachsbestandteile der Wirtspflanze werden pilzliche Gene, die w{\"a}hrend der Pr{\"a}penetrationsprozesse eine wichtige Rolle spielen k{\"o}nnen, differenziell exprimiert. Um solche Gene zu identifizieren wurden cDNA Klonbibliotheken mittels der suppression subtractive hybridization (SSH) 22 Minuten nach der Inokulation erstellt. Das auf Formvar®-Harz basierende in vitro System erm{\"o}glichte die selektive Anreicherung von cDNA Sequenzen aus B. graminis f.sp. hordei Konidien, die auf n-Hexacosanal beschichteten Oberfl{\"a}chen inokuliert wurden. Aus einer Reihe von Kandidaten wurde eine cDNA-Sequenz identifiziert, die sowohl auf Gerstenbl{\"a}ttern als auch auf mit n-Hexacosanal oder extrahiertem Gerstenwachs beschichteten Oberfl{\"a}chen hochreguliert war. Mittels 3' und 5' RACE wurde das n-Hexacosanal induzierte Transkript kloniert. Diese cDNA-Sequenz wies keine Homologien zu bekannten Genen, die Funktionen in der pilzlichen Entwicklung und der Ausbildung von Pathogenit{\"a}t in Pflanzen haben, auf.}, subject = {.}, language = {en} } @phdthesis{XavierdeSouza2024, author = {Xavier de Souza, Aline}, title = {Ecophysiological adaptations of the cuticular water permeability within the Solanaceae family}, doi = {10.25972/OPUS-22539}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225395}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The cuticle, a complex lipidic layer synthesized by epidermal cells, covers and protects primary organs of all land plants. Its main function is to avoid plant desiccation by limiting non-stomatal water loss. The cuticular properties vary widely among plant species. So far, most of the cuticle-related studies have focused on a limited number of species, and studies addressing phylogenetically related plant species are rare. Moreover, comparative studies among organs from the same plant species are still scarce. Thus, this study focus on organ-specificities of the cuticle within and between plant species of the Solanaceae family. Twenty-seven plant species of ten genera, including cultivated and non- cultivated species, were investigated to identify potential cuticular similarities. Structural, chemical and functional traits of fully expanded leaves, inflated fruiting calyces, and ripe fruits were analyzed. The surface morphology was investigated by scanning electron microscopy. Leaves were mainly amphistomatic and covered by an epicuticular wax film. The diversity and distribution of trichomes varied among species. Only the leaves of S. grandiflora were glabrous. Plant species of the Leptostemonum subgenus had numerous prickles and non-glandular stellate trichomes. Fruits were stomata-free, except for S. muricatum, and a wax film covered their surface. Last, lenticel- like structures and remaining scars of broken trichomes were found on the surface of some Solanum fruits. Cuticular water permeability was used as indicators of the cuticular transpiration barrier efficiency. The water permeability differed among plant species, organs and fruit types with values ranging up to one hundred-fold. The minimum leaf conductance ranged from 0.35 × 10-5 m s-1 in S. grandiflora to 31.54 × 10-5 m s-1 in S. muricatum. Cuticular permeability of fruits ranged from 0.64 × 10-5 m s-1 in S. dulcamara (fleshy berry) to 34.98 × 10-5 m s-1 in N. tabacum (capsule). Generally, the cuticular water loss of dry fruits was about to 5-fold higher than that of fleshy fruits. Interestingly, comparisons between cultivated and non-cultivated species showed that wild species have the most efficient cuticular transpiration barrier in leaves and fruits. The average permeability of leaves and fruits of wild plant species was up to three-fold lower in comparison to the cultivated ones. Moreover, ripe fruits of P. ixocarpa and P. peruviana showed two-times lower cuticular transpiration when enclosed by the inflated fruiting calyx. The cuticular chemical composition was examined using gas chromatography. Very-long-chain aliphatic compounds primarily composed the cuticular waxes, being mostly dominated by n- alkanes (up to 80\% of the total wax load). Primary alkanols, alkanoic acids, alkyl esters and branched iso- and anteiso-alkanes were also frequently found. Although in minor amounts, sterols, pentacyclic triterpenoids, phenylmethyl esters, coumaric acid esters, and tocopherols were identified in the cuticular waxes. Cuticular wax coverages highly varied in solanaceous (62- fold variation). The cuticular wax load of fruits ranged from 0.55 μg cm-2 (Nicandra physalodes) to 33.99 μg cm-2 (S. pennellii), whereas the wax amount of leaves varied from 0.90 μg cm-2 (N. physalodes) to 28.42 μg cm-2 (S. burchellii). Finally, the wax load of inflated fruiting calyces ranged from 0.56 μg cm-2 in P. peruviana to 2.00 μg cm-2 in N. physalodes. For the first time, a comparative study on the efficiency of the cuticular transpiration barrier in different plant organs of closely related plant species was conducted. Altogether, the cuticular chemical variability found in solanaceous species highlight species-, and organ-specific wax biosynthesis. These chemical variabilities might relate to the waterproofing properties of the plant cuticle, thereby influencing leaf and fruit performances. Additionally, the high cuticular water permeabilities of cultivated plant species suggest a potential existence of a trade-off between fruit organoleptic properties and the efficiency of the cuticular transpiration barrier. Last, the high cuticular water loss of the solanaceous dry fruits might be a physiological adaptation favouring seed dispersion.}, subject = {Kutikula}, language = {en} } @phdthesis{Seufert2021, author = {Seufert, Pascal}, title = {Chemical and physical structure of the barrier against water transpiration of leaves: Contribution of different wax compounds}, doi = {10.25972/OPUS-20896}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208963}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The cuticle is constituted of the biopolymer cutin and intra- and epicuticular waxes. In some cases, it has epicuticular wax crystals, protruding from the epicuticular wax film. One of the most important tasks is protection against desiccation. Many investigations were conducted to find the transport limiting component of the cuticle. It is evidentially confirmed that the waxes form this barrier. These waxes are multifactorial blends made of very-long-chain aliphatic (VLCA) compounds and triterpenoids (TRP). The VLCAs were proposed to constitute the transpiration barrier to water. However, experimental confirmation was lacking so far. The present study focuses on the development of a method to selectively extract TRPs from the cuticle and the impact of the removal on the transpiration barrier. The plants deployed in this study exhibited several features. They had no epicuticular crystals on their surfaces, were astomatous, had a rather durable and possibly isolatable cuticle. A broad range of wax compositions was covered from plants with no TRP content and low wax load like Hedera helix and Zamioculcas zamiifolia to plants with high TRP content and high wax load like Nerium oleander. The selective extraction was conducted using a sequence of solvents. TRPs were extracted almost exhaustively from CMs with the first MeOH extract. Only a minor amount of shorter chained VLCAs was obtained. The remaining waxes, consisting mostly of VLCAs and some remnant TRPs, were removed with the following TCM extract. After the extractions, the water permeance of native cuticular membranes (CM), MeOH extracted (M) and dewaxed cuticular discs (MX) was investigated gravimetrically. Compared to the water permeance of CMs, Ms showed no or only a small increase in water conductance. MXs, however, always showed strongly increased values. The knowledge about the wax compounds constituting the transport-limiting properties is vital for different projects. For various issues, it would be favourable to have a standardized wax mixture as an initial point of research. It could be used to develop screening procedures to investigate the impact of adjuvants on cuticular waxes or the influence of wax constituents on the properties of cuticular waxes. This work concentrated on the development of an artificial wax mixture, which mimics the physical properties of a plant leaf wax sufficiently. As target wax, the leaf wax of Schefflera elegantissima was chosen. The wax of this plant species consisted almost exclusively of VLCAs, had a rather simple composition regarding compound classes and chain length distribution and CMs could be isolated. Artificial binary, ternary and quaternary waxes corresponding to the conditions within the plant wax were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD) techniques and Fourier-transform infrared (FTIR) spectroscopy. Phase diagrams were mapped out for a series of binary, ternary and quaternary wax mixtures. FTIR experiments were conducted using, ternary and a quaternary artificial wax blends. The blends were chosen to represent the conditions within the wax of the adaxial CM plant wax. The FTIR experiments exhibited an increasing resemblance of the artificial wax to the plant wax (adaxial CM wax) with an increasing number of compounds in the artificial wax. The same trend was found for DSC thermograms. Thermograms of ternary and quaternary blends exhibited more overlapping peaks and occurred in a temperature range more similar to the range of the whole leaf plant wax. The XRD spectrum at room temperature showed good conformity with the quaternary blend. The current work illustrates a method for selective extraction of TRPs from isolated CMs. It gives direct experimental proof of the association of the water permeance barrier with the VLCA rather than to the TRPs. Furthermore, the possibility to mimic cuticular waxes using commercially available wax compounds is investigated. The results show promising feasibility for its viability, enabling it to perform as a standardized initial point for further research (e.g. to examine the influence of different constituents on waxes), revealing valuable knowledge about the structure and the chemistry-function relationship of cuticular waxes.}, subject = {Kutikula}, language = {en} } @phdthesis{Schuster2016, author = {Schuster, Ann-Christin}, title = {Chemical and functional analyses of the plant cuticle as leaf transpiration barrier}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133475}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Cuticles cover all above-ground primary plant organs and are lipoid in nature consisting of a cutin matrix with cuticular waxes embedded within or deposited on its surface. The foremost function of the plant cuticle is the limitation of transpirational water loss into the surrounding atmosphere. Transpiration of water vapour from plants differs between stomatal and cuticular transpiration. Stomatal closure minimises the stomatal water loss and the remaining, much lower water transpiration occurs through the plant cuticle. Temperature influence on the transpiration barrier properties of intact leaves is not yet known, despite the importance of the cuticular transpiration especially under drought and heat conditions. The present study focuses on the temperature-dependent minimum water permeability of whole leaves, in comparison to the temperature effect on the cuticular permeance of isolated, astomatous cuticles (Chapter I - III). The minimum water permeability was determined gravimetrically from leaf drying curves and represents the cuticular water permeability of intact, stomatous leaves under conditions of complete stomatal closure. The temperature effect on the transpiration barrier of the desert plant Rhazya stricta and the Mediterranean sclerophyll Nerium oleander exposed a continuous increase of minimum water permeabilities with an increase in temperature. In contrast to other published studies, no abrupt and steep increase of the water permeability at high temperatures was detected. This steep increase indicates structural changes of the barrier properties of isolated cuticular membranes with a drastic decrease of efficiency. A stabilising impact of the cell wall on the plant cuticle of intact leaves was proposed. This steadying effect was confirmed with different experimental approaches measuring the cuticular water permeability of Prunus laurocerasus intact leaves. Physiological analysis of water transport on isolated, astomatous leaf cuticles indicated a drastic decline of the barrier properties at elevated temperatures for Prunus laurocerasus but not for Nerium oleander. Cuticular components were quantitatively and qualitatively analysed by gas chromatography with a flame ionisation detector and a mass spectrometric detector, respectively. A high accumulation of pentacyclic triterpenoids as cuticular wax components in relation to the cutin monomer coverage was detected for Nerium oleander and for Rhazya stricta leaves, too. Accordingly, reinforcing of the cutin matrix by triterpenoids was proposed to improve the mechanical strength and to reduce the extensibility of plant cuticles. Thus, structural changes of the cuticular barrier properties were potentially suppressed at elevated temperatures. The function of the cuticular wax amount and/or wax composition and its relation with the cuticular water permeability remains to be elucidated. In the second part of this work the cuticular wax quantity and quality as well as its impact on the transpiration barrier properties was analysed in order to deduce a potential relation between chemistry and function of plant cuticles (Chapter IV - V). Chemical analyses of the cuticular wax components of a wide range of plant species, including one tropical (Vanilla planifolia), temperate (Juglans regia, Plantago lanceolata), Mediterranean (Nerium oleander, Olea europaea) and one desert (Rhazya stricta) plant species, were conducted. The cuticular wax compositions of nine characteristic plant species from xeric limestone sites naturally located in Franconia (Southern Germany) were determined for the first time. The corresponding minimum or cuticular water permeabilities of both stomatous and astomatous leaf surfaces were measured to detect a potential relationship between the cuticular wax amount, wax composition and the cuticular barrier properties. It was demonstrated that abundant cuticular wax amounts did not constitute more efficient transpiration barriers. However, 55\% of the cuticular barrier function can be attributed to the very-long-chain aliphatic wax coverages. These new findings provide evidence that the acyclic wax constituents play a pivotal role establishing efficient transpiration barriers. Additionally, these findings strengthen the hypothesis that cyclic components, such as pentacyclic triterpenoids, do not hinder the water diffusion through plant cuticles as effectively as acyclic constituents. For the first time a relationship between the cuticular wax composition and the transpiration barrier properties of a wide range of plant species proved insights into the potential relation between chemistry and function of plant cuticles.}, subject = {Kutikula}, language = {en} }