@article{SchliermannNickel2018, author = {Schliermann, Anna and Nickel, Joachim}, title = {Unraveling the connection between fibroblast growth factor and bone morphogenetic protein signaling}, series = {International Journal of Molecular Sciences}, volume = {19}, journal = {International Journal of Molecular Sciences}, number = {10}, issn = {1422-0067}, doi = {10.3390/ijms19103220}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177358}, year = {2018}, abstract = {Ontogeny of higher organisms as well the regulation of tissue homeostasis in adult individuals requires a fine-balanced interplay of regulating factors that individually trigger the fate of particular cells to either stay undifferentiated or to differentiate towards distinct tissue specific lineages. In some cases, these factors act synergistically to promote certain cellular responses, whereas in other tissues the same factors antagonize each other. However, the molecular basis of this obvious dual signaling activity is still only poorly understood. Bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs) are two major signal protein families that have a lot in common: They are both highly preserved between different species, involved in essential cellular functions, and their ligands vastly outnumber their receptors, making extensive signal regulation necessary. In this review we discuss where and how BMP and FGF signaling cross paths. The compiled data reflect that both factors synchronously act in many tissues, and that antagonism and synergism both exist in a context-dependent manner. Therefore, by challenging a generalization of the connection between these two pathways a new chapter in BMP FGF signaling research will be introduced.}, language = {en} } @phdthesis{Wu2007, author = {Wu, Rongxue}, title = {Treatment with integrin alpha v inhibitor abolishes compensatory cardiac hypertrophy due to altered signal transduction and ECM gene expression}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-21339}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Integrine sind Transmembranrezeptoren, welche mechanische Signale von der extrazellul{\"a}ren Matrix (ECM) zum Zytoskelett {\"u}bermitteln ("outside-in-signaling"). Viele molekulare Defekte in der Verbindung zwischen Zytoskelett und ECM erzeugen bekanntermaßen Kardiomyopathien. alpha v Integrin scheint eine Hauptrolle in verschiedenen Prozessen der kardialen Reorganisation zu spielen, wie z.B. Regulation der Zellproliferation, -migration und -differenzierung. Unsere Hypothese war, dass alpha v -Integrin-vermittelte Signale notwendig f{\"u}r die kompensatorische Hypertrophie nach Aortenkonstriktion sind und assoziiert mit der Modulation der Expression von ECM-Proteinen. Dazu wurden M{\"a}use mit einem spezifischen alpha v Integrin-Inhibitor behandelt und einer Aortenkonstriktion (AB) unterzogen. Nach zwei Tagen und nach sieben Tagen wurden die M{\"a}use echokardiographisch untersucht und eingehende h{\"a}modynamische Untersuchungen wurden durchgef{\"u}hrt. Die Behandlung mit dem alpha v -Integrin-Inhibitor f{\"u}hrte zu einer dilatativen Kardiomyopathie und Herzinsuffizienz in den AB-M{\"a}usen, gekennzeichnet durch einen dilatierten linken Ventrikel, schlechte linksventrikul{\"a}re Funktion und einer Lungenstauung, wohingegen die scheinbehandelten Tiere eine kompensatorische Hypertrophie des linken Ventrikels zeigten. Untersuchungen der beteiligten Signalwege zeigten eine Aktivierung des p38 MAP-Kinase-Signalwegs, von ERK 1 und -2, der Focal Adhesion Kinase FAK und Tyrosin-Phosphorylierung von c-Src in den Kontrollherzen, was in den Inhibitor-behandelten Herzen fehlte. mRNA-Expressionsanalysen f{\"u}r 96 Gene mittels "Micro-Arrays" ermittelten verschiedene genomische Ziele des alpha v -Integrin-aktivierten Signalwegs. 18 f{\"u}r ECM-Proteine codierende Gene wurden mehr als 2-fach hochreguliert, z.B. Kollagen (8,11-fach ± 2,2), Fibronectin (2,32 ± 094), SPARC (3,78 ± 0,12), ADAMTS-1 (3,51 ± 0,81) und TIMP2 (2,23 ± 0,98), wohingegen die Aktivierung dieser Gene in Inhibitor-behandelten Tieren aufgehoben war. Wir folgern daraus, dass Signalwege unterhalb von alpha v -Integrin, mediiert durch MAP-Kinasen, FAK und c-Src, zu einer verst{\"a}rkten Expression von ECM-Komponenten f{\"u}hrt, welche f{\"u}r die kompensatorische Antwort auf Druckbelastung n{\"o}tig sind.}, subject = {Antigen}, language = {en} } @article{BoehmScherzerKroletal.2016, author = {B{\"o}hm, Jennifer and Scherzer, S{\"o}nke and Krol, Elzbieta and Kreuzer, Ines and von Meyer, Katharina and Lorey, Christian and Mueller, Thomas D. and Shabala, Lana and Monte, Isabel and Solano, Roberto and Al-Rasheid, Khaled A. S. and Rennenberg, Heinz and Shabala, Sergey and Neher, Erwin and Hedrich, Rainer}, title = {The Venus flytrap Dionaea muscipula counts prey-induced action potentials to induce sodium uptake}, series = {Current Biology}, volume = {26}, journal = {Current Biology}, number = {3}, doi = {10.1016/j.cub.2015.11.057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190870}, pages = {286-295}, year = {2016}, abstract = {Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na\(^+\)-rich animal and nutrition for the plant.}, language = {en} } @phdthesis{Fischer2010, author = {Fischer, Andreas}, title = {The Role of Protein-Protein Interactions in the Activation Cycle of RAF Kinases}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48139}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Members of the RAF protein kinase family are key regulators of diverse cellular processes. The need for isoform-specific regulation is reflected by the fact that all RAFs not only display a different degree of activity but also perform isoform-specific functions at diverse cellular compartments. Protein-protein-interactions and phosphorylation events are essential for the signal propagation along the Ras-RAF-MEK-ERK cascade. More than 40 interaction partners of RAF kinases have been described so far. Two of the most important regulators of RAF activity, namely Ras and 14-3-3 proteins, are subject of this work. So far, coupling of RAF with its upstream modulator protein Ras has only been investigated using truncated versions of RAF and regardless of the lipidation status of Ras. We quantitatively analyzed the binding properties of full-length B- and C-RAF to farnesylated H-Ras in presence and absence of membrane lipids. While the isolated Ras-binding domain of RAF exhibit a high binding affinity to both, farnesylated and nonfarnesylated H-Ras, the full-length RAF kinases demonstrate crucial differences in their affinity to Ras. In contrast to C-RAF that requires carboxyterminal farnesylated H-Ras for interaction at the plasma membrane, B-RAF also binds to nonfarnesylated H-Ras in the cytosol. For identification of the potential farnesyl binding site we used several fragments of the regulatory domain of C-RAF and found that the binding of farnesylated H-Ras is considerably increased in the presence of the cysteine-rich domain of RAF. In B-RAF a sequence of 98 amino acids at the extreme N terminus enables binding of Ras independent of its farnesylation status. The deletion of this region altered Ras binding as well as kinase properties of B-RAF to resemble C-RAF. Immunofluorescence studies in mammalian cells revealed essential differences between B- and C-RAF regarding the colocalization with Ras. In conclusion, our data suggest that that B-RAF, in contrast to C-RAF, is also accessible for nonfarnesylated Ras in the cytosolic environment due to its prolonged N terminus. Therefore, the activation of B-RAF may take place both at the plasma membrane and in the cytosolic environment. Furthermore, the interaction of RAF isoforms with Ras at different subcellular sites may also be governed by the complex formation with 14-3-3 proteins. 14-3-3 adapter proteins play a crucial role in the activation of RAF kinases, but so far no information about the selectivity of the seven mammalian isoforms concerning RAF association and activation is available. We analyzed the composition of in vivo RAF/14-3-3 complexes isolated from mammalian cells with mass spectrometry and found that B-RAF associates with a greater variety of 14-3-3 proteins than C- and A-RAF. In vitro binding assays with purified proteins supported this observation since B-RAF showed highest affinity to all seven 14-3-3 isoforms, whereas C-RAF exhibited reduced affinity to some and A-RAF did not bind to the 14-3-3 isoforms epsilon, sigma, and tau. To further examine this isoform specificity we addressed the question of whether both homo- and heterodimeric forms of 14-3-3 proteins participate in RAF signaling. By deleting one of the two 14-3-3 isoforms in Saccharomyces cerevisiae we were able to show that homodimeric 14-3-3 proteins are sufficient for functional activation of B- and C-RAF. In this context, the diverging effect of the internal, inhibiting and the activating C-terminal 14-3-3 binding domain in RAF could be demonstrated. Furthermore, we unveil that prohibitin stimulates C-RAF activity by interfering with 14-3-3 at the internal binding site. This region of C-RAF is also target of phosphorylation as part of a negative feedback loop. Using tandem MS we were able to identify so far unknown phosphorylation sites at serines 296 and 301. Phosphorylation of these sites in vivo, mediated by activated ERK, leads to inhibition of C-RAF kinase activity. The relationship of prohibitin interference with 14-3-3 binding and phosphorylation of adjacent sites has to be further elucidated. Taken together, our results provide important new information on the isoform-specific regulation of RAF kinases by differential interaction with Ras and 14-3-3 proteins and shed more light on the complex mechanism of RAF kinase activation.}, subject = {Signaltransduktion}, language = {en} } @article{KlotzJesaitis1994, author = {Klotz, Karl-Norbert and Jesaitis, A. J.}, title = {The interaction of N-formyl peptide chemoattractant receptors with the membrane skeleton is energy-dependent}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60499}, year = {1994}, abstract = {Desensitization of N-fonnyl peptide chemoattractant receptors (FPR) in human neutrophils is thought to be achieved by lateral segregation of receptors and G proteins within the plane of the plasma membrane resulting in an interruption of the signalling cascade. Direct coupling of FPR to membrane skeletal actin appears to be the basis of this process~ however, the molecular mechanism is unknown. In this study we investigated the effect of energy depletion on formation of FPR-membrane skeleton complexes. In addition the effect of the protein kinase C inhibitor stauroporine and the phosphatase inhibitor okadaic acid on coupling of FPR to the membrane skeletonwas studied. Human neutrophils were desensitized using the photoreactive agonist N-formy1-met-leu-phe-1ys-N'[\(^{125}\)I]2(p-azidosalicylamido)ethyl-1,3'-dithiopropionate (fMLFK-[\(^{125}\)I]ASD) after ATP depletion with NaF or after incubation with the respective inhibitors. The interaction of FPR with the membrane skeleton was studied by Sedimentation of the membrane skeleton-associated receptors in sucrose density gradients. Energy depletion of the cells markedly inhibited the formation of FPR-membrane skeleton complexes. This does not appear tobe related to inhibition of protein phosphorylation due to ATP depletion because inhibition of protein kinases and phosphatases bad no significant effect on coupling of FPR to the membrane skeleton. We conclude, therefore, that coupling of FPR to the membrane skeleton is an energy,dependent process which does not appear to require modification of the receptor protein by phosphorylation.}, subject = {Toxikologie}, language = {en} } @phdthesis{Laesker2023, author = {L{\"a}sker, Katharina}, title = {The influence of the short-chain fatty acid butyrate on "Signal transducer and activator of transcription 3" (STAT3) and selected inflammatory genes in the colon carcinoma cell line CACO-2 cultured in 2D and 3D}, doi = {10.25972/OPUS-30038}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300389}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {A disturbance in the symbiotic mutualism between the intestinal microbiome and the human host's organism (syn. dysbiosis) accompanies the development of a variety of inflammatory and metabolic diseases that comprise the Metabolic Syndrome, chronic inflammatory gut diseases like Crohn's disease, Non-alcoholic fatty liver disease (NAFLD) and cardiovascular diseases, among others. The changed uptake and effectiveness of short chain fatty acids (SCFAs) as well as an increase of the intestinal permeability are common, interdependent disease elements in this regard. Short chain fatty acids are end-products of intestinal bacterial fermentation and affect the mucosal barrier integrity via numerous molecular mechanisms. There is evidence to suggest, that SCFAs have a modulating influence on Signal transducer and activator of transcription 3 (STAT3) in intestinal epithelial cells. STAT3 is a central gene-transcription factor in signaling pathways of proliferation and inflammation. It can be activated by growth factors and other intercellular signaling molecules like the cytokine Oncostatin M (OSM). The mode of STAT3's activation exhibits, finally, a decisive influence on the immunological balance at the intestinal mucosa. Therefore, the posttranslational modification of STAT3 under the influence of SCFAs is likely to be a very important factor within the development and -progression of dysbiosis-associated diseases. In this study, a clear positive in vitro-effect of the short chain fatty acid butyrate on the posttranslational serine727-phosphorylation of STAT3 and its total protein amount in the human adenocarcinoma cell line CACO2 is verified. Moreover, an increased gene expression of the OSM-receptor subunit OSMRβ can be observed after butyrate incubation. Histone deacetylase inhibition is shown to have a predominant role in these effects. Furthermore, a subsequent p38 MAPK-activation by Butyrate is found to be a key molecular mechanism regarding the STAT3-phosphorylation at serine727-residues. To consider the portion of butyrate receptor signaling in this context in future assays, a CACO-2 cell 3D-culture model is introduced in which an improvement of the GPR109A-receptor expression in CACO-2 cells is accomplished.}, subject = {Butyrate }, language = {en} } @article{HyunvanderGraaffAlbaceteetal.2014, author = {Hyun, Tae Kyung and van der Graaff, Eric and Albacete, Alfonso and Eom, Seung Hee and Grosskinsky, Dominik K. and B{\"o}hm, Hannah and Janschek, Ursula and Rim, Yeonggil and Ali, Walid Wahid and Kim, Soo Young and Roitsch, Thomas}, title = {The Arabidopsis PLAT Domain Protein1 is Critically Involved in Abiotic Stress Tolerance}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {11}, doi = {10.1371/journal.pone.0112946}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114648}, pages = {e112946}, year = {2014}, abstract = {Despite the completion of the Arabidopsis genome sequence, for only a relatively low percentage of the encoded proteins experimental evidence concerning their function is available. Plant proteins that harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and belong to the PLAT-plant-stress protein family are ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood. Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a combination of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress tolerance. Strikingly, PLAT1 promoted growth under non-stressed conditions. Abiotic stress treatments induced PLAT1 expression and caused expansion of its expression domain. The ABF/ABRE transcription factors, which are positive mediators of abscisic acid signalling, activate PLAT1 promoter activity in transactivation assays and directly bind to the ABRE elements located in this promoter in electrophoretic mobility shift assays. This suggests that PLAT1 represents a novel downstream target of the abscisic acid signalling pathway. Thus, we showed that PLAT1 critically functions as positive regulator of abiotic stress tolerance, but also is involved in regulating plant growth, and thereby assigned a function to this previously uncharacterised PLAT domain protein. The functional data obtained for PLAT1 support that PLAT-plant-stress proteins in general could be promising targets for improving abiotic stress tolerance without yield penalty.}, language = {en} } @article{PilsKoppPetersonetal.2012, author = {Pils, Stefan and Kopp, Kathrin and Peterson, Lisa and Tascon, Julia Delgado and Nyffenegger-Jann, Naja J. and Hauck, Christof R.}, title = {The Adaptor Molecule Nck Localizes the WAVE Complex to Promote Actin Polymerization during CEACAM3-Mediated Phagocytosis of Bacteria}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {3}, doi = {10.1371/journal.pone.0032808}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131747}, pages = {e32808}, year = {2012}, abstract = {Background: CEACAM3 is a granulocyte receptor mediating the opsonin-independent recognition and phagocytosis of human-restricted CEACAM-binding bacteria. CEACAM3 function depends on an intracellular immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is tyrosine phosphorylated by Src family kinases upon receptor engagement. The phosphorylated ITAM-like sequence triggers GTP-loading of Rac by directly associating with the guanine nucleotide exchange factor (GEF) Vav. Rac stimulation in turn is critical for actin cytoskeleton rearrangements that generate lamellipodial protrusions and lead to bacterial uptake. Principal Findings: In our present study we provide biochemical and microscopic evidence that the adaptor proteins Nck1 and Nck2, but not CrkL, Grb2 or SLP-76, bind to tyrosine phosphorylated CEACAM3. The association is phosphorylation-dependent and requires the Nck SH2 domain. Overexpression of the isolated Nck1 SH2 domain, RNAi-mediated knock-down of Nck1, or genetic deletion of Nck1 and Nck2 interfere with CEACAM3-mediated bacterial internalization and with the formation of lamellipodial protrusions. Nck is constitutively associated with WAVE2 and directs the actin nucleation promoting WAVE complex to tyrosine phosphorylated CEACAM3. In turn, dominant-negative WAVE2 as well as shRNA-mediated knock-down of WAVE2 or the WAVE-complex component Nap1 reduce internalization of bacteria. Conclusions: Our results provide novel mechanistic insight into CEACAM3-initiated phagocytosis. We suggest that the CEACAM3 ITAM-like sequence is optimized to co-ordinate a minimal set of cellular factors needed to efficiently trigger actin-based lamellipodial protrusions and rapid pathogen engulfment.}, language = {en} } @article{SchneiderKleinMielichSuessetal.2015, author = {Schneider, Johannes and Klein, Teresa and Mielich-S{\"u}ss, Benjamin and Koch, Gudrun and Franke, Christian and Kuipers, Oskar P. and Kov{\´a}cs, {\´A}kos T. and Sauer, Markus and Lopez, Daniel}, title = {Spatio-temporal Remodeling of Functional Membrane Microdomains Organizes the Signaling Networks of a Bacterium}, series = {PLoS Genetics}, volume = {11}, journal = {PLoS Genetics}, number = {4}, doi = {10.1371/journal.pgen.1005140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125577}, pages = {e1005140}, year = {2015}, abstract = {Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known. We recently discovered that bacterial membranes organize their signal transduction pathways in functional membrane microdomains (FMMs) that are structurally and functionally similar to the eukaryotic lipid rafts. In this report, we took advantage of the tractability of the prokaryotic model Bacillus subtilis to provide evidence for the coexistence of two distinct families of FMMs in bacterial membranes, displaying a distinctive distribution of proteins specialized in different biological processes. One family of microdomains harbors the scaffolding flotillin protein FloA that selectively tethers proteins specialized in regulating cell envelope turnover and primary metabolism. A second population of microdomains containing the two scaffolding flotillins, FloA and FloT, arises exclusively at later stages of cell growth and specializes in adaptation of cells to stationary phase. Importantly, the diversification of membrane microdomains does not occur arbitrarily. We discovered that bacterial cells control the spatio-temporal remodeling of microdomains by restricting the activation of FloT expression to stationary phase. This regulation ensures a sequential assembly of functionally specialized membrane microdomains to strategically organize signaling networks at the right time during the lifespan of a bacterium.}, language = {en} } @phdthesis{Hofmann2003, author = {Hofmann, Markus}, title = {Signal transduction during defense response and source-sink transition in tomato}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-5421}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Plants have evolved an elaborate system to cope with a variety of biotic and abiotic stresses. Typically, under stress conditions an appropriate defense response is invoked which is accompanied by changes in the metabolic status of the plant. Photosynthesis is downregulated and sucrose is imported into the tissue, which provides a faster and more constant flux of energy and carbon skeletons to perform the defense response. Interestingly, these processes are co-ordinately regulated and the signal transduction chains underlying these cellular programs appear to share at least some common elements. Both the induction of sink metabolism and defense response is dependent on signal transduction pathways involving protein phosphorylation. Furthermore, regulation of extracellular invertase (INV) and phenylalanine ammonia lyase (PAL) which are markers for sink metabolism and defense response is preceded by the transient activation of MAP kinases. In depth analysis of MAP kinase activation by partial purification led to the discovery that, depending on the stimulus, different subsets of MAP kinases are activated. This differential MAPK activation is likely to possess a signal encoding function. In addition, the partial purification of MAP kinases was found to be suitable to address specific cellular functions to individual MAP kinase isoenzymes. By this way, LpWIPK was identified as the major MAP kinase activity induced after stimulation of tomato cells with different elicitors. LpWIPK is thus considered as a key regulator of defense response together with sink induction in tomato. A study using nonmetabolisable sucrose analogs revealed that the regulation of photosynthesis is not directly coupled to this signal transduction pathway since it is independent of MAP kinase activation. Nonetheless, downregulation is induced by the same stimuli that induce the defense response and sink metabolism and it will therefore be interesting to uncover the branch points of this signalling network in the future. MAP kinases are not only central components regulating the response to biotic stresses. In addition to e.g. pathogens, MAP kinases are as well involved in signal transduction events invoked by abiotic stresses like cold and drought. In a recent study, we could show that a MAP kinase is activated by heat stress, under conditions a plant will encounter in nature. This previously unknown MAP kinase is able to specifically recognise the heat stress transcription factor HsfA3 as a substrate, which supports a role of this MAP kinase in the regulation of the heat stress response. Moreover, the observation that HsfA3 is phosphorylated by the heat activated MAP kinase in vitro provides a promising basis to identify HsfA3 as the first physiological substrate of a plant MAP kinase. Intracellular protons have been implicated in the signal transduction of defense related signals. In a study using Chenopodium rubrum cells, we could show that cytosolic changes in pH values do not precede the regulation of the marker genes INV and PAL. Depending on the stimulus applied, cytosolic acidification or alkalinisation can be observed, which excludes a role for protons as signals in this pathway. Together with the concomitant changes of the pH value of the extracellular space, these variations can thus be considered as terminal part of the defense response itself rather than as a second messenger. WRKY transcription factors have only recently been identified as indirect targets of a central plant MAP kinase cascade. In addition, the identification of cognate binding sites in the promoters of INV and PAL supports a role for these proteins in the co-ordinate regulation of defense response and sink induction. A novel elicitor responsive WRKY transcription factor, LpWRKY1, was cloned from tomato and characterised with respect to its posttranslational modification. This immediate early transcription factor is transiently induced upon pathogen attack and the induction is dependent on phosphorylation. Furthermore, it was shown for the first time with respect to WRKY transcription factors, that LpWRKY1 is phosphorylated in vivo. Analysis of the role of this phosphorylation by in gel assays using recombinant WRKY protein as the substrate revealed two protein kinases that are transiently activated during the defense response to phosphorylate LpWRKY1. This data demonstrates that WRKY proteins require phosphorylation to modulate their DNA binding or transactivating activity.}, language = {en} } @article{SangesScheuermannZahedietal.2012, author = {Sanges, C. and Scheuermann, C. and Zahedi, R. P. and Sickmann, A. and Lamberti, A. and Migliaccio, N. and Baljuls, A. and Marra, M. and Zappavigna, S. and Reinders, J. and Rapp, U. and Abbruzzese, A. and Caraglia, M. and Arcari, P.}, title = {Raf kinases mediate the phosphorylation of eukaryotic translation elongation factor 1A and regulate its stability in eukaryotic cells}, series = {Cell Death and Disease}, volume = {3}, journal = {Cell Death and Disease}, number = {e276}, doi = {10.1038/cddis.2012.16}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124149}, year = {2012}, abstract = {We identified eukaryotic translation elongation factor 1A (eEF1A) Raf-mediated phosphorylation sites and defined their role in the regulation of eEF1A half-life and of apoptosis of human cancer cells. Mass spectrometry identified in vitro S21 and T88 as phosphorylation sites mediated by B-Raf but not C-Raf on eEF1A1 whereas S21 was phosphorylated on eEF1A2 by both B- and C-Raf. Interestingly, S21 belongs to the first eEF1A GTP/GDP-binding consensus sequence. Phosphorylation of S21 was strongly enhanced when both eEF1A isoforms were preincubated prior the assay with C-Raf, suggesting that the eEF1A isoforms can heterodimerize thus increasing the accessibility of S21 to the phosphate. Overexpression of eEF1A1 in COS 7 cells confirmed the phosphorylation of T88 also in vivo. Compared with wt, in COS 7 cells overexpressed phosphodeficient (A) and phospho-mimicking (D) mutants of eEF1A1 (S21A/D and T88A/D) and of eEF1A2 (S21A/D), resulted less stable and more rapidly proteasome degraded. Transfection of S21 A/D eEF1A mutants in H1355 cells increased apoptosis in comparison with the wt isoforms. It indicates that the blockage of S21 interferes with or even supports C-Raf induced apoptosis rather than cell survival. Raf-mediated regulation of this site could be a crucial mechanism involved in the functional switching of eEF1A between its role in protein biosynthesis and its participation in other cellular processes.}, language = {en} } @article{SangesScheuermannZahedietal.2012, author = {Sanges, C. and Scheuermann, C. and Zahedi, R. P. and Sickmann, A. and Lamberti, A. and Migliaccio, N. and Baljuls, A. and Marra, M. and Zappavigna, S. and Rapp, U. and Abbruzzese, A. and Caraglia, M. and Arcari, P.}, title = {Raf kinases mediate the phosphorylation of eukaryotic translation elongation factor 1A and regulate its stability in eukaryotic cells}, series = {Cell Death \& Disease}, volume = {3}, journal = {Cell Death \& Disease}, number = {e276}, doi = {10.1038/cddis.2012.16}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134673}, year = {2012}, abstract = {We identified eukaryotic translation elongation factor 1A (eEF1A) Raf-mediated phosphorylation sites and defined their role in the regulation of eEF1A half-life and of apoptosis of human cancer cells. Mass spectrometry identified in vitro S21 and T88 as phosphorylation sites mediated by B-Raf but not C-Raf on eEF1A1 whereas S21 was phosphorylated on eEF1A2 by both B-and C-Raf. Interestingly, S21 belongs to the first eEF1A GTP/GDP-binding consensus sequence. Phosphorylation of S21 was strongly enhanced when both eEF1A isoforms were preincubated prior the assay with C-Raf, suggesting that the eEF1A isoforms can heterodimerize thus increasing the accessibility of S21 to the phosphate. Overexpression of eEF1A1 in COS 7 cells confirmed the phosphorylation of T88 also in vivo. Compared with wt, in COS 7 cells overexpressed phosphodeficient (A) and phospho-mimicking (D) mutants of eEF1A1 (S21A/D and T88A/D) and of eEF1A2 (S21A/D), resulted less stable and more rapidly proteasome degraded. Transfection of S21 A/D eEF1A mutants in H1355 cells increased apoptosis in comparison with the wt isoforms. It indicates that the blockage of S21 interferes with or even supports C-Raf induced apoptosis rather than cell survival. Raf-mediated regulation of this site could be a crucial mechanism involved in the functional switching of eEF1A between its role in protein biosynthesis and its participation in other cellular processes.}, language = {en} } @article{KlotzJesaitis1994, author = {Klotz, Karl-Norbert and Jesaitis, A. J.}, title = {Physical coupling of N-formyl peptide chemoattractant receptors to G protein is not affected by desensitization}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60483}, year = {1994}, abstract = {Desensitization of N-formyl peptide chemoattractant receptors (FPR) in human neutrophils results in association of these receptors to the membrane skeleton. This is thought to be the critical event in the lateral segregation of receptors and guanyl nucleotide-binding proteins (G proteins) within the plane of the plasma membrane resulting in an interruption of the signaling cascade. In this study we probed the interaction of FPR with G protein in human neutrophils that were desensitized to various degrees. Human neutrophils were desensitized using the photoreactive agonist N-formyl-met-leu-phelys- N\(^\epsilon\)-[\(^{125}\)I]2(p-azidosalicylamido )ethyl-1 ,3 '-dithiopropionate (/MLFK-[\(^{125}\)I]ASD). The interaction if FPR with G protein was studied via a reconstitution assay and subsequent analysis of FPR-G protein complexes in sucrose density gradients. FPR-G protein complexes were reconstituted with solubilized FPR from partially and fully desensitized neutrophils with increasing concentrations of Gi purified from bovine brain. The respective EC\(_{50}\) values for reconstitution were similar to that determined for FPR from unstimulated neutrophils (Bommakanti RK et al., J Bio[ Chem 267: 757~7581, 1992). We conclude, therefore, that the affinity of the interaction of FPR with G protein is not affected by desensitization, consistent with the model of lateral segregation of FPR and G protein as a mechanism of desensitization.}, subject = {Toxikologie}, language = {en} } @article{HuangDingRoelfsemaetal.2021, author = {Huang, Shouguang and Ding, Meiqi and Roelfsema, M. Rob G. and Dreyer, Ingo and Scherzer, S{\"o}nke and Al-Rasheid, Khaled A. S and Gao, Shiqiang and Nagel, Georg and Hedrich, Rainer and Konrad, Kai R.}, title = {Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel GtACR1}, series = {Science Advances}, volume = {7}, journal = {Science Advances}, number = {28}, doi = {10.1126/sciadv.abg4619}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260925}, year = {2021}, abstract = {Guard cells control the aperture of plant stomata, which are crucial for global fluxes of CO\(_2\) and water. In turn, guard cell anion channels are seen as key players for stomatal closure, but is activation of these channels sufficient to limit plant water loss? To answer this open question, we used an optogenetic approach based on the light-gated anion channelrhodopsin 1 (GtACR1). In tobacco guard cells that express GtACR1, blue- and green-light pulses elicit Cl\(^-\) and NO\(_3\)\(^-\) currents of -1 to -2 nA. The anion currents depolarize the plasma membrane by 60 to 80 mV, which causes opening of voltage-gated K+ channels and the extrusion of K+. As a result, continuous stimulation with green light leads to loss of guard cell turgor and closure of stomata at conditions that provoke stomatal opening in wild type. GtACR1 optogenetics thus provides unequivocal evidence that opening of anion channels is sufficient to close stomata.}, language = {en} } @article{KleinHesslingMuhammadKleinetal.2017, author = {Klein-Hessling, Stefan and Muhammad, Khalid and Klein, Matthias and Pusch, Tobias and Rudolf, Ronald and Fl{\"o}ter, Jessica and Qureischi, Musga and Beilhack, Andreas and Vaeth, Martin and Kummerow, Carsten and Backes, Christian and Schoppmeyer, Rouven and Hahn, Ulrike and Hoth, Markus and Bopp, Tobias and Berberich-Siebelt, Friederike and Patra, Amiya and Avots, Andris and M{\"u}ller, Nora and Schulze, Almut and Serfling, Edgar}, title = {NFATc1 controls the cytotoxicity of CD8\(^{+}\) T cells}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {511}, doi = {10.1038/s41467-017-00612-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170353}, year = {2017}, abstract = {Cytotoxic T lymphocytes are effector CD8\(^{+}\) T cells that eradicate infected and malignant cells. Here we show that the transcription factor NFATc1 controls the cytotoxicity of mouse cytotoxic T lymphocytes. Activation of Nfatc1\(^{-/-}\) cytotoxic T lymphocytes showed a defective cytoskeleton organization and recruitment of cytosolic organelles to immunological synapses. These cells have reduced cytotoxicity against tumor cells, and mice with NFATc1-deficient T cells are defective in controlling Listeria infection. Transcriptome analysis shows diminished RNA levels of numerous genes in Nfatc1\(^{-/-}\) CD8\(^{+}\) T cells, including Tbx21, Gzmb and genes encoding cytokines and chemokines, and genes controlling glycolysis. Nfatc1\(^{-/-}\), but not Nfatc2\(^{-/-}\) CD8\(^{+}\) T cells have an impaired metabolic switch to glycolysis, which can be restored by IL-2. Genome-wide ChIP-seq shows that NFATc1 binds many genes that control cytotoxic T lymphocyte activity. Together these data indicate that NFATc1 is an important regulator of cytotoxic T lymphocyte effector functions.}, language = {en} } @phdthesis{Harth2010, author = {Harth, Stefan}, title = {Molecular Recognition in BMP Ligand-Receptor Interactions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52797}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Bone Morphogenetic Proteins (BMPs) are secreted multifunctional signaling proteins that play an important role during development, maintenance and regeneration of tissues and organs in almost all vertebrates and invertebrates. BMPs transmit their signals by binding to two types of serine-/threonine-kinase receptors. BMPs bind first to their high affinity receptor, thereby recruiting their low affinity receptor into the complex. This receptor assembly starts a Smad (Small mothers against decapentaplegic) protein signaling cascade which regulates the transcription of responsive genes. Up to date, only seven type I and five type II receptors are known for more than 30 ligands. Therefore, many BMP ligands can recruit more than one receptor subtype. Vice versa, receptors can bind to several ligands, indicating a highly promiscuous ligand-receptor interaction. This raises the following questions: (i) How are BMPs able to induce ligand-specific signals, despite forming complexes with identical receptor composition and (ii) how are they able to recognize and bind various binding partners in a highly specific manner. From the ligand's point of view, heterodimeric BMPs are valuable tools for studying the interplay between different sets of receptors, thereby providing new insights into how the various BMP signals can be generated. This study describes the expression and purification of the heterodimers BMP-2/6 and -2/7 from E.coli cells. BIAcore interaction studies and various in vitro cell activity assays revealed that the generated heterodimers are biologically active. Furthermore, BMP-2/6 and -2/7 exhibit a higher biological activity in most of the cell assays compared to their homodimeric counterparts. In addition, the BMP type I receptor BMPR-IA is involved in heterodimeric BMP signaling. However, the usage of other type I receptor subtypes (e.g. ActR-I) building a heteromeric ligand-receptor type I complex as indicated in previous works could not be determined conclusively. Furthermore, BMP heterodimers seem to require only one type I receptor for signaling. From the receptors' point of view, the BMP type I receptor BMPR-IA is a prime example for its promiscuous binding to different BMP ligands. The extracellular binding interface of BMPR-IA is mainly unfolded in its unbound form, requiring a large induced fit to adopt the conformation when bound to its ligand BMP-2. In order to unravel whether the binding promiscuity of BMPR-IA is linked to structural plasticity of its binding interface, the interaction of BMPR-IA bound to an antibody Fab fragment was investigated. The Fab fragment was selected because of its ability to recognize the BMP-2 binding epitope on BMPR-IA, thus neutralizing the BMP-2 mediated receptor activation. This study describes the crystal structure of the complex of the extracellular domain of BMPR-IA bound to the antibody Fab fragment AbyD1556. The crystal structure revealed that the contact surface of BMPR-IA overlaps extensively with the contact surface of BMPR-IA for BMP-2 interaction. Although the contact epitopes of BMPR-IA to both binding partners coincide, the three-dimensional structures of BMPR-IA in both complexes differ significantly. In contrast to the structural differences, alanine-scanning mutagenesis of BMPR-IA showed that the functional determinants for binding to both the antibody and BMP-2 are almost identical. Comparing the structures of BMPR-IA bound to BMP-2 or to the Fab AbyD1556 with the structure of unbound BMPR-IA revealed that binding of BMPR-IA to its interaction partners follows a selection fit mechanism, possibly indicating that the ligand promiscuity of BMPR-IA is inherently encoded by structural adaptability.}, subject = {Knochen-Morphogenese-Proteine}, language = {en} } @article{KuckaLangZhangetal.2021, author = {Kucka, Kirstin and Lang, Isabell and Zhang, Tengyu and Siegmund, Daniela and Medler, Juliane and Wajant, Harald}, title = {Membrane lymphotoxin-α\(_2\)β is a novel tumor necrosis factor (TNF) receptor 2 (TNFR2) agonist}, series = {Cell Death \& Disease}, volume = {12}, journal = {Cell Death \& Disease}, number = {4}, doi = {10.1038/s41419-021-03633-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260077}, pages = {360}, year = {2021}, abstract = {In the early 1990s, it has been described that LTα and LTβ form LTα\(_2\)β and LTαβ\(_2\) heterotrimers, which bind to TNFR1 and LTβR, respectively. Afterwards, the LTαβ\(_2\)-LTβR system has been intensively studied while the LTα\(_2\)β-TNFR1 interaction has been ignored to date, presumably due to the fact that at the time of identification of the LTα\(_2\)β-TNFR1 interaction one knew already two ligands for TNFR1, namely TNF and LTα. Here, we show that LTα\(_2\)β interacts not only with TNFR1 but also with TNFR2. We furthermore demonstrate that membrane-bound LTα\(_2\)β (memLTα\(_2\)β), despite its asymmetric structure, stimulates TNFR1 and TNFR2 signaling. Not surprising in view of its ability to interact with TNFR2, LTα\(_2\)β is inhibited by Etanercept, which is approved for the treatment of rheumatoid arthritis and also inhibits TNF and LTα.}, language = {en} } @phdthesis{Lutz2002, author = {Lutz, Marion}, title = {Effects of nerve growth factor on TGF-Beta,Smad signal transduction in PC12 cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-4248}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Transforming growth factor-ß (TGF-ß) is a multifunctional cytokine that is engaged in regulating versatile cellular processes that are pivotal for development and homeostasis of most tissues in multicellular organisms. TGF-ß signal transduction is initially propagated by binding of TGF-ß to transmembrane serine/threonine kinase receptors, designated TßRI and TßRII. Upon activation, the receptors phosphorylate Smad proteins which serve as downstream mediators that enter the nucleus and finally trigger transcriptional responses of specific genes. During the past years, it became evident that signaling cascades do not proceed in a linear fashion but rather represent a complex network of numerous pathways that mutually influence each other. Along these lines, members of the TGF-ß superfamily are attributed to synergize with neurotrophins. Together, they mediate neurotrophic effects in different populations of the nervous system, suggesting that an interdependence exists between TGF-ßs on the one hand and neurotrophins on the other. In the present work, the crosstalk of NGF and TGF-ß/Smad signaling pathways is characterized in rat pheochromocytoma cells (PC12) which are frequently used as a model system for neuronal differentiation. PC12 cells were found to be unresponsive to TGF-ß due to limiting levels of TßRII. However, stimulation with NGF results in initiation of Smad-mediated transcription independent of TGF-ß. Binding of NGF to functional TrkA receptors triggers activation of Smad3. This NGF-dependent Smad activation occurs by a mechanism which is different from being induced by TGF-ß receptors in that it provokes a different phosphorylation pattern of R-Smads. Together with an inferior role of TßRI, Smad3 is proposed to serve as a substrate for cellular kinases other than TßRI. Based on the presented involvement of components of both, the MAPK/Erk and the TAK1/MKK6 cascade, signal mediators of these pathways rank as candidates to mediate direct activation of Smad3. Smad3 is subsequently translocated to the nucleus and activates transcription in a Smad4-dependent manner. Negative regulation is provided by Smad7 which was found to act as a potent inhibitor of Smad signaling not only in TGF-ß- but also in NGF-mediated cascades. The potential of NGF to activate the Smad pathway independent of TGF-ß might be of special importance in regulating expression of genes that are essential for the development and function of neuronal cells or of other NGF-sensitive cells, in particular those which are TGF-ß-resistant.}, subject = {Transforming growth factor beta}, language = {en} } @phdthesis{Foeger2000, author = {F{\"o}ger, Niko}, title = {Costimulatory function of CD44}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1186}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {T cell activation is supposed to require two signals via engagement of the TCR and a costimulatory molecule. However, the signaling cascade of costimulatory molecules has remained elusive. Here, I provide evidence that CD44 supports proliferation as well as apoptosis mainly, if not exclusively, by enhancing signal transduction via the TCR/CD3 complex. Blockade of CD44 interferes with mounting of an immune response. This has been demonstrated by the significantly decreased IL-2 production of a T helper line, when stimulated in the presence of a competing CD44 receptor globulin. To evaluate the underlying mechanism, CD44 was cross-linked by an immobilized antibody (IM7). Cross-linking of CD44 induces proliferation of peripheral T cells and apoptosis of thymocytes and a T helper line in the presence of subthreshold levels of anti-CD3. CD44-induced proliferation was accompanied by an upregulation of the activation markers CD25 and CD69 and an increased cytokine production. TCR-mediated apoptosis was accompanied by an upregulation of CD95 ligand and CD95 receptor, which could be greatly enhanced by costimulation via CD44. On the level of signal transduction, coligation of CD44 with CD3 resulted in a strong and sustained increase of early tyrosine phosphorylation events and upregulated downstream signal transduction pathways, such as the ras/ERK and the JNK signaling cascades. These pleiotropic effects of CD44 are due to its involvement in the most proximal events in TCR signaling, as demonstrated by a strong increase in the phosphorylation of the TCR z-chain and ZAP-70. Notably, cross-linking of CD44 was binding-site dependent and was only effective when supporting colocalization of the TCR/CD3 complex and CD44. Cross-linking of CD44 via immobilized IM7 also induced profound changes in cell morphology, characterized by strong adhesion, spreading and development of surface extensions, which were dependent on a functional tubulin and actin cytoskeleton. These cytoskeletal rearrangements were mediated by rac1, a small GTPase of the rho subfamily, and src-family kinases, two of which, fyn and lck, were found to be associated with CD44. By cross-linkage of CD44 these kinases were redistributed into so called lipid rafts. It is supposed that for T cell activation a relocation of the TCR/CD3 complex into the same membrane microdomains is required. The data are interpreted in the sense that the costimulatory function of CD44 relies on its cooperativity with the TCR. Most likely by recruitment of phosphokinases CD44 significantly lowers the threshold for the initiation of signaling via the TCR. The requirement for immobilized anti-CD44, the necessity for neighbouring anti-CD3 and the dependence on the binding site of CD44 strongly suggest that the costimulatory mechanism involves cytoskeletal rearrangements, which facilitate recruitment and redirection of src-family protein kinases in glycolipid enriched membrane microdomains.}, subject = {Antigen CD44}, language = {en} } @article{DrechslerGroetzingerHermanns2012, author = {Drechsler, Johannes and Groetzinger, Joachim and Hermanns, Heike M.}, title = {Characterization of the Rat Oncostatin M Receptor Complex Which Resembles the Human, but Differs from the Murine Cytokine Receptor}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {8}, doi = {10.1371/journal.pone.0043155}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133879}, year = {2012}, abstract = {Evaluation of a pathophysiological role of the interleukin-6-type cytokine oncostatin M (OSM) for human diseases has been complicated by the fact that mouse models of diseases targeting either OSM or the OSM receptor (OSMR) complex cannot fully reflect the human situation. This is due to earlier findings that human OSM utilizes two receptor complexes, glycoprotein 130 (gp130)/leukemia inhibitory factor receptor (LIFR) (type I) and gp130/OSMR (type II), both with wide expression profiles. Murine OSM on the other hand only binds to the gp130/OSMR (type II) receptor complex with high affinity. Here, we characterize the receptor usage for rat OSM. Using different experimental approaches (knock-down of the OSMR expression by RNA interference, blocking of the LIFR by LIF-05, an antagonistic LIF variant and stably transfected Ba/F3 cells) we can clearly show that rat OSM surprisingly utilizes both, the type I and type II receptor complex, therefore mimicking the human situation. Furthermore, it displays cross-species activities and stimulates cells of human as well as murine origin. Its signaling capacities closely mimic those of human OSM in cell types of different origin in the way that strong activation of the Jak/STAT, the MAP kinase as well as the PI3K/Akt pathways can be observed. Therefore, rat disease models would allow evaluation of the relevance of OSM for human biology.}, language = {en} }