@phdthesis{LeBlancSoto2017, author = {Le Blanc Soto, Solange}, title = {Role of FGF signaling in the adipogenic and osteogenic differentiation of human bone marrow stromal cells in a three-dimensional \(in\) \(vitro\) model}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147659}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Adult human skeletal stem cells are considered to give rise to the bone marrow stromal compartment, including bone-forming osteoblasts and marrow adipocytes. Reduced osteogenesis and enhanced adipogenesis of these skeletal progenitors may contribute to the bone loss and marrow fat accumulation observed during aging and osteoporosis, the main disorder of bone remodeling. Concordantly, in vitro evidence indicates that adipogenic and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) display an inverse relationship under numerous conditions. Hence, the identification of factors modulating inversely both differentiation pathways is of great therapeutic interest. Based on mRNA expression analysis of inversely regulated genes after switching differentiation conditions, our group had previously proposed that fibroblast growth factor 1 (FGF1) might play such a modulator role in hBMSC differentiation. The main aim of this work was, therefore, to investigate the role of FGF1 signaling in the adipogenic and osteogenic differentiation of hBMSCs using a three-dimensional (3D) culture system based on collagen type I hydrogels in order to better mimic the natural microenvironment. Adipogenic and osteogenic differentiation of hBMSCs embedded in collagen gels was successfully established. Treatment with recombinant human FGF1 (rhFGF1), as well as rhFGF2, throughout differentiation induction was found to exert a dose-dependent inhibitory effect on adipogenesis in hBMSCs. This inhibitory effect was found to be reversible and dependent on FGF receptors (FGFR) signaling, given that simultaneous pharmacological blockage of FGFRs rescued adipogenic differentiation. Additionally, matrix mineralization under osteogenic induction was also inhibited by rhFGF1 and rhFGF2 in a dose-dependent manner. A transient treatment with rhFGF1 and rhFGF2 during an expansion phase, however, enhanced proliferation of hBMSCs without affecting the differentiation capacity, although matrix mineralization under osteogenic conditions was hindered. Additionally, rhFGF1 and rhFGF2 treatments affected the matrix remodeling ability of hBMSCs, which displayed alterations in the cytoskeletal phenotype and the expression patterns of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). On the other hand, inhibition of FGFR signaling throughout differentiation induction elicited a strong enhancement of matrix mineralization under osteogenic conditions but had no significant effect on adipocyte formation under adipogenic induction. IX In conclusion, FGF1 and FGF2 signaling was found to support the expansion of bone marrow stromal precursors with adipogenic and osteogenic capacities, to hinder adipogenic and osteogenic differentiation if continuously present during differentiation induction and to alter the matrix remodeling ability of hBMSCs within a 3D collagenous microenvironment.}, subject = {Fettzelle}, language = {en} } @phdthesis{Sbiera2022, author = {Sbiera, Iuliu}, title = {Possible role of epithelial to mesenchymal transition and its associated FGF/FGFR pathway in adrenocortical carcinoma}, doi = {10.25972/OPUS-27745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-277454}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Recent studies have hinted to an involvement of epithelial to mesenchymal transition, a mechanism often associated with metastasis in epithelial cancers, in adrenocortical carcinoma. In addition, the knowledge about the FGF/FGFR pathway in pathogenesis of the adrenal gland, a pathway often associated with the epithelial to mesenchymal transition, is sparse and fragmented. We assessed, in a large number of normal, benign and malignant adrenocortical tissues (a total of 181 different samples), the expression of canonical and novel epithelial and mesenchymal markers and compared it with their expression in typical epithelial and mesenchymal tissues. In addition, we also quantified the expression of most members of the FGF/FGFR pathway in adrenocortical tissues and compared it against well-studied epithelial and mesenchymal tissues as well as between malignant and not malignant adrenocortical tissues, in order to assess the possible connection to epithelial to mesenchymal transition and find possible drug targets. Surprisingly, both normal and neoplastic adrenocortical tissues lacked expression of epithelial markers (e.g. E-Cadhering or EpCAM) but strongly expressed mesenchymal markers (e.g. N-Cadherin or SLUG), suggesting a higher similarity of adrenocortical tissues to mesenchymal compared to epithelial tissues, reminiscent of the adrenocortical origin from the intermediate mesoderm. Despite their ubiquitous expression in all adrenocortical tissues, mesenchymal markers had a variable expression in adrenocortical carcinoma, associating either directly or inversely with different clinical markers of tumor aggressiveness. Lymph node infiltration was associated with high expression of SLUG (p = 0.04), and at the same time low expression of N-cadherin (p = 0.001), and the same pattern was observed for venous infiltration of tumoral tissue, Weiss score of tumor malignancy or Ki67 proliferation marker. In malignant compared to benign adrenal tumors, we found significant differences in the expression of 16 out of the 94 studied FGF receptor pathway related genes. Genes involved in tissue differentiation and metastatic spread through epithelial to mesenchymal transition were most strongly altered. The therapeutically targetable FGF receptors 1 and 4 were upregulated 4.6- and 6-fold, respectively, in malignant compared to benign adrenocortical tumors, which was confirmed by using two different quantification methods in both frozen and paraffin embedded tissue material. High expression of FGFR1 and 4 was significantly associated with worse patient prognosis (High FGFR1 expression was associated with a shorter overall patient survival of 84 vs 148 months (HR=1.8, 95\% CI: 1.01-3.25) as well as a shorter resection free survival of 25 vs 75 months ((HR=2.93, 95\% CI: 1.25-6.84), while high FGFR4 was associated with a much shorter overall survival of 50 vs 155 months (HR=2.44, 95\% CI: 1.41-4.22). In conclusion, epithelial to mesenchymal transition does not seem to play a role in adrenocortical carcinoma tumor progression, and the FGF/FGFR pathway, even if it is probably not related to EMT, is nonetheless associated with tumor aggressiveness. Furthermore, quantification of FGF receptors may enable a stratification of adrenocortical carcinoma for the use of FGFR inhibitors in future clinical trials.}, subject = {Nebennierenrindenkrebs}, language = {en} } @phdthesis{Foerster2012, author = {F{\"o}rster, Sabine}, title = {Nuclear Hormone Receptors and Fibroblast Growth Factor Receptor Signaling in Echinococcus multilocularis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85832}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Parasitic helminths share a large degree of common genetic heritage with their various hosts. This includes cell-cell-communication mechanisms mediated by small peptide cytokines and lipophilic/steroid hormones. These cytokines are candidate molecules for host-parasite cross-communication in helminth diseases. In this work the function of two evolutionary conserved signaling pathways in the model cestode Echinococcus multilocularis has been studied. First, signaling mechanisms mediated through fibroblast growth factors (FGF) and their cognate receptors (FGFR) which influence a multitude of biological functions, like homeostasis and differentiation, were studied. I herein investigated the role of EmFR which is the only FGFR homolog in E. multilocularis. Functional analyses using the Xenopus oocyte expression system clearly indicate that EmFR can sense both acidic and basic FGF of human origin, resulting in an activation of the EmFR tyrosine kinase domain. In vitro experiments demonstrate that mammalian FGF significantly stimulates proliferation and development of E. multilocularis metacestode vesicles and primary cells. Furthermore, DNA synthesis and the parasite's Erk-like MAPK cascade module was stimulated in the presence of exogenously added mammalian FGF. By using the FGFR inhibitor BIBF1120 the activity of EmFR in the Xenopus oocyte system was effectively blocked. Addition of BIBF1120 to in vitro cultivated Echinococcus larval material led to detrimental effects concerning the generation of metacestode vesicles from parasite stem cells, the proliferation and survival of metacestode vesicles, and the dedifferentiation of protoscoleces towards the metacestode. In conclusion, these data demonstrate the presence of a functional EmFR-mediated signaling pathway in E. multilocularis that is able to interact with host-derived cytokines and that plays an important role in larval parasite development. Secondly, the role of nuclear hormone receptor (NHR) signaling was addressed. Lipophilic and steroid hormone signaling contributes to the regulation of metazoan development. By means of in silico analyses I demonstrate that E. multilocularis expresses a set of 17 NHRs that broadly overlaps with that of the related flatworms Schistosoma mansoni and S. japonicum, but also contains several NHR encoding genes that are unique to this parasite. One of these, EmNHR1, is homolog to the DAF-12/HR-96 subfamily of NHRs which regulate cholesterol homeostasis in metazoans. Modified yeast-two hybrid analyses revealed that host serum contains a ligand which induces homodimerization of the EmNHR1 ligand-binding domain. Also, a HNF4-like homolog, EmHNF4, was characterized. Human HNF4 plays an important role in liver development. RT-PCR experiments showed that both isoforms of the EmHNF4 encoding gene are expressed stage-dependently suggesting distinct functions of the two isoforms in the parasite. Moreover, specific regulatory mechanisms on the convergence of NHR signaling and TGF-β/BMP signaling pathways in E. multilocularis have been identified. On the one hand, EmNHR1 directly interacted with the EmSmadC and on the other hand EmHNF4b interacted with EmSmadD, EmSmadE which are all downstream signaling components of the TGF-β/BMP signaling pathway. This suggests cross-communication in order to regulate target gene expression. With these results, further studies on the role of NHR signaling in the cestode will be facilitated. Also, the first serum-free in vitro cultivation system for E. multilocularis was established using PanserinTM401 as medium. Serum-free co-cultivation with RH-feeder cells and an axenic cultivation method have been established. With the help of this serum-free cultivation system investigations on the role of specific peptide hormones, like FGFs, or lipophilic/steroid hormones, like cholesterol, for the development of helminths will be much easier.}, subject = {Signaltransduktion}, language = {en} } @phdthesis{Sutor2016, author = {Sutor, Dominic Christian}, title = {Induktion von FGF19 \& FXR in humanen HT-29 Zellen unter Verwendung der nukle{\"a}ren Agonisten Vitamin D3, Vitamin A \& CDCA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141152}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Ziel dieser Arbeit ist es, weitere Einblicke in die Aktivierung von FGF19 und FXR durch diverse nukle{\"a}re Agonisten und deren spezifischer Rezeptoren zu gewinnen. Hierbei soll im humanen Zellmodell versucht und mittels DNA-Analyse untersucht werden, welche messbaren molekularbiologischen Auswirkungen eine Behandlung mit unterschiedlichen Substanzen in variierenden Konzentrationen bewirkt. Genauer soll betrachtet werden, ob sich Vitamin A und Vitamin D als Induktoren von FGF19 in menschlichen Darmzelllinien eignen, da dies bereits im Mausmodel demonstriert werden konnte. Dieser initialen Vermutung folgend, sollen auch die m{\"o}glichen Wechselwirkungen und Synergismen untersucht werden - welche Mechanismen liegen diese zu Grunde und {\"u}ber welche molekularen Signalwege werden dies vermuteten Effekte vermittelt. Hierdurch soll ein besseres Verst{\"a}ndnis f{\"u}r die Rezeptor und Agonistenabh{\"a}ngigen Abl{\"a}ufe erm{\"o}glicht werden, um m{\"o}gliche R{\"u}ckschl{\"u}sse auf weitere Funktionen bereits bekannter Vertreter zu erlauben. Aufgrund der bereits oben beschriebenen Tiermodelle und der daraus gewonnenen Einsichten w{\"u}rde sich durch ein noch besseres Verst{\"a}ndnis des FGF15/19 und des Farnesoid X Rezeptors in menschlichen Zellen, auf eine zuk{\"u}nftige Anwendung in analytischen und/oder therapeutischen Bereichen hoffen lassen. Diese Arbeit soll sich deshalb den Fragen widmen, ob eine FGF19 Induktion in humanen Darmzellen durch die nukle{\"a}ren Agonisten VD3, 9-cis RA und CDCA, {\"a}hnlich dem Mausmodel, m{\"o}glich ist und welche Faktoren dabei Einfl{\"u}sse auf die beschriebenen Effekte haben.}, subject = {Fibroblastenwachstumsfaktor}, language = {de} } @phdthesis{Gutmann2019, author = {Gutmann, Marcus}, title = {Functionalization of cells, extracellular matrix components and proteins for therapeutic application}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170602}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Glycosylation is a biochemical process leading to the formation of glycoconjugates by linking glycans (carbohydrates) to proteins, lipids and various small molecules. The glycans are formed by one or more monosaccharides that are covalently attached, thus offering a broad variety depending on their composition, site of glycan linkage, length and ramification. This special nature provides an exceptional and fine tunable possibility in fields of information transfer, recognition, stability and pharmacokinetic. Due to their intra- and extracellular omnipresence, glycans fulfill an essential role in the regulation of different endogenous processes (e.g. hormone action, immune surveillance, inflammatory response) and act as a key element for maintenance of homeostasis. The strategy of metabolic glycoengineering enables the integration of structural similar but chemically modified monosaccharide building blocks into the natural given glycosylation pathways, thereby anchoring them in the carbohydrate architecture of de novo synthesized glycoconjugates. The available unnatural sugar molecules which are similar to endogenous sugar molecules show minimal perturbation in cell function and - based on their multitude functional groups - offer the potential of side directed coupling with a target substance/structure as well as the development of new biological properties. The chemical-enzymatic strategy of glycoengineering provides a valuable complement to genetic approaches. This thesis primarily focuses on potential fields of application for glycoengineering and its further use in clinic and research. The last section of this work outlines a genetic approach, using special Escherichia coli systems, to integrate chemically tunable amino acids into the biosynthetic pathway of proteins, enabling specific and site-directed coupling with target substances. With the genetic information of the methanogen archaea, Methanosarcina barkeri, the E. coli. system is able to insert a further amino acid, the pyrrolysine, at the ribosomal site during translation of the protein. The natural stop-codon UAG (amber codon) is used for this newly obtained proteinogenic amino acid. Chapter I describes two systems for the integration of chemically tunable monosaccharides and presents methods for characterizing these systems. Moreover, it gives a general overview of the structure as well as intended use of glycans and illustrates different glycosylation pathways. Furthermore, the strategy of metabolic glycoengineering is demonstrated. In this context, the structure of basic building blocks and the epimerization of monosaccharides during their metabolic fate are discussed. Chapter II translates the concept of metabolic glycoengineering to the extracellular network produced by fibroblasts. The incorporation of chemically modified sugar components in the matrix provides an innovative, elegant and biocompatible method for site-directed coupling of target substances. Resident cells, which are involved in the de novo synthesis of matrices, as well as isolated matrices were characterized and compared to unmodified resident cells and matrices. The natural capacity of the matrix can be extended by metabolic glycoengineering and enables the selective immobilization of a variety of therapeutic substances by combining enzymatic and bioorthogonal reaction strategies. This approach expands the natural ability of extracellular matrix (ECM), like the storage of specific growth factors and the recruitment of surface receptors along with synergistic effects of bound substances. By the selection of the cell type, the production of a wide range of different matrices is possible. Chapter III focuses on the target-oriented modification of cell surface membranes of living fibroblast and human embryonic kidney cells. Chemically modified monosaccharides are inserted by means of metabolic glycoengineering and are then presented on the cell surface. These monosaccharides can later be covalently coupled, by "strain promoted azide-alkyne cycloaddition" (SPAAC) and/or "copper(I)-catalyzed azide-alkyne cycloaddition" (CuAAC), to the target substance. Due to the toxicity of the copper catalysator in the CuAAC, cytotoxicity analyses were conducted to determine the in vivo tolerable range for the use of CuAAC on living cell systems. Finally, the efficacy of both bioorthogonal reactions was compared. Chapter IV outlines two versatile carrier - spacer - payload delivery systems based on an enzymatic cleavable linker, triggered by disease associated protease. In the selection of carrier systems (i) polyethylene glycol (PEG), a well-studied, Food and Drug Administration approved substance and very common tool to increase the pharmacokinetic properties of therapeutic agents, was chosen as a carrier for non-targeting systems and (ii) Revacept, a human glycoprotein VI antibody, was chosen as a carrier for targeting systems. The protease sensitive cleavable linker was genetically inserted into the N-terminal region of fibroblast growth factor 2 (FGF-2) without jeopardizing protein activity. By exchanging the protease sensitive sequence or the therapeutic payload, both systems represent a promising and adaptable approach for establishing therapeutic systems with bioresponsive release, tailored to pre-existing conditions. In summary, by site-specific functionalization of various delivery platforms, this thesis establishes an essential cornerstone for promising strategies advancing clinical application. The outlined platforms ensure high flexibility due to exchanging single or multiple elements of the system, individually tailoring them to the respective disease or target site.}, subject = {Glykosylierung}, language = {en} } @phdthesis{Simann2015, author = {Simann, Meike}, title = {Aufkl{\"a}rung der Effekte von Fibroblasten-Wachstumsfaktor 1 und 2 auf die Adipogenese und Osteogenese von prim{\"a}ren humanen Knochenmark-Stroma-Zellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119322}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Regulating and reverting the adipo-osteogenic lineage decision of trabecular human bone marrow stromal cells (hBMSCs) represents a promising approach for osteoporosis therapy and prevention. Fibroblast growth factor 1 (FGF1) and its subfamily member FGF2 were scored as lead candidates to exercise control over lineage switching processes (conversion) in favor of osteogenesis previously. However, their impact on differentiation events is controversially discussed in literature. Hence, the present study aimed to investigate the effects of these FGFs on the adipogenic and osteogenic differentiation and conversion of primary hBMSCs. Moreover, involved downstream signaling mechanisms should be elucidated and, finally, the results should be evaluated with regard to the possible therapeutic approach. This study clearly revealed that culture in the presence of FGF1 strongly prevented the adipogenic differentiation of hBMSCs as well as the adipogenic conversion of pre-differentiated osteoblastic cells. Lipid droplet formation was completely inhibited by a concentration of 25 ng/µL. Meanwhile, the expression of genetic markers for adipogenic initiation, peroxisome proliferator-activated receptor gamma 2 (PPARg2) and CCAAT/enhancer binding protein alpha (C/EBPa), as well as subsequent adipocyte maturation, fatty acid binding protein 4 (FABP4) and lipoprotein lipase (LPL), were significantly downregulated. Yet, the genetic markers of osteogenic commitment and differentiation were not upregulated during adipogenic differentiation and conversion under FGF supplementation, not supporting an event of osteogenic lineage switching. Moreover, when examining the effects on the osteogenic differentiation of hBMSCs and the osteogenic conversion of pre-differentiated adipocytic cells, culture in the presence of FGF1 markedly decreased extracellular matrix (ECM) mineralization. Additionally, the gene expression of the osteogenic marker alkaline phosphatase (ALP) was significantly reduced and ALP enzyme activity was decreased. Furthermore, genetic markers of osteogenic commitment, like the master regulator runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein 4 (BMP4), as well as markers of osteogenic differentiation and ECM formation, like collagen 1 A1 (COL1A1) and integrin-binding sialoprotein (IBSP), were downregulated. In contrast, genes known to inhibit ECM mineralization, like ANKH inorganic pyrophosphate transport regulator (ANKH) and osteopontin (OPN), were upregulated. ANKH inhibition revealed that its transcriptional elevation was not crucial for the reduced matrix mineralization, perhaps due to decreased expression of ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) that likely annulled ANKH upregulation. Like FGF1, also the culture in the presence of FGF2 displayed a marked anti-adipogenic and anti-osteogenic effect. The FGF receptor 1 (FGFR1) was found to be crucial for mediating the described FGF effects in adipogenic and osteogenic differentiation and conversion. Yet, adipogenic conversion displayed a lower involvement of the FGFR1. For adipogenic differentiation and osteogenic differentiation/conversion, downstream signal transduction involved the extracellular signal-regulated kinases 1 and 2 (ERK1/2) and the mitogen-activated protein kinase (MAPK)/ERK kinases 1 and 2 (MEK1/2), probably via the phosphorylation of FGFR docking protein FGFR substrate 2a (FRS2a) and its effector Ras/MAPK. The c-Jun N-terminal kinase (JNK), p38-MAPK, and protein kinase C (PKC) were not crucial for the signal transduction, yet were in part responsible for the rate of adipogenic and/or osteogenic differentiation itself, in line with current literature. Taken together, to the best of our knowledge, our study was the first to describe the strong impact of FGF1 and FGF2 on both the adipogenic and osteogenic differentiation and conversion processes of primary hBMSCs in parallel. It clearly revealed that although both FGFs were not able to promote the differentiation and lineage switching towards the osteogenic fate, they strongly prevented adipogenic differentiation and lineage switching, which seem to be elevated during osteoporosis. Our findings indicate that FGF1 and FGF2 entrapped hBMSCs in a pre-committed state. In conclusion, these agents could be applied to potently prevent unwanted adipogenesis in vitro. Moreover, our results might aid in unraveling a pharmacological control point to eliminate the increased adipogenic differentiation and conversion as potential cause of adipose tissue accumulation and decreased osteoblastogenesis in bone marrow during aging and especially in osteoporosis.}, subject = {Mesenchymzelle}, language = {en} } @phdthesis{Torlopp2010, author = {Torlopp, Angela}, title = {Die Rolle von FGF in der fr{\"u}hen Kardiogenese und Proepikardiogenese im H{\"u}hnerembryo}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47695}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In dieser Arbeit sollte die Funktion von FGF-Signalen im Herzfeld und in der Entwicklung des Proepikards im H{\"u}hnerembryo untersucht werden. Fibroblasten-Wachstumsfaktoren (FGF) sind eine große Gruppe von Signalmolek{\"u}len und in eine Vielzahl von Entwicklungsprozessen involviert. Das Proepikard (PE), welches sich asymmetrisch auf dem rechten Sinushorn des Sinus venosus entwickelt, bildet die Grundlage des Koronargef{\"a}ßsystems des Herzens. FGF-Liganden (FGF2, FGF10, FGF12) werden insbesondere in den epithelialen Zellen des Proepikards exprimiert, sowie an der sinomyokardialen Basis dieser embryonalen Progenitorpopulation. Die FGF-Rezeptoren (FGFR1, FGFR2, FGFR4) weisen ein {\"a}hnliches Expressionsmuster auf und deren Inhibition, durch spezifische Antagonisten, war der Ausgangspunkt f{\"u}r die funktionelle Analyse der proepikardialen FGF-Signalaktivit{\"a}t. Die Inhibition von FGF-Signalen in vitro f{\"u}hrt zu einem verringerten Wachstum sowie einer erh{\"o}hten Apoptoserate in proepikardialen Explantaten, die unter serumfreien Bedingungen kultiviert wurden. Es konnte gezeigt werden, dass sowohl der Ras/MAPK- als auch der PI3-Kinase-Signalweg, beides Bestandteile der FGF-Signaltransduktion, f{\"u}r das Wachstum und {\"U}berleben proepikardialer Zellen verantwortlich sind. Dagegen sind FGF-Signale nicht in die Etablierung proepikardialer Identit{\"a}t involviert, wie die Analyse der Expression etablierter proepikardialer Markergene wie TBX18, WT1 und TBX5 nach FGF-Inhibition zeigte. Dies konnte gleichfalls durch in vivo-Experimente gezeigt werden, in denen die rechtsseitige Inhibition von FGF zu einem retardierten Proepikardwachstum f{\"u}hrte. Weiterhin konnte gezeigt werden, dass die asymmetrische Apoptose in der sich transient entwickelnden linksseitigen Proepikardanlage auf eine fr{\"u}he differentielle Expression von Apoptosegenen wie Caspase 2 zur{\"u}ckgeht. Diese asymmetrische Expression wird von FGF8 reguliert, wahrscheinlich als Teil eines fr{\"u}hen rechtsseitigen Signalweges, der Apoptose im rechten Sinushorn des kardialen Einflusstraktes verhindert. Im zweiten Teil der Arbeit wurde die Expression der Hyaluronansynthase 2 (HAS2) in Abh{\"a}ngigkeit von FGF in der Herzfeldregion analysiert. Hyaluronansynthasen produzieren Hyalurons{\"a}ure, welches eine essentielle Komponente der extrazellul{\"a}ren Matrix ist. Es wurde in vivo gezeigt, dass die Expression von HAS2 im prim{\"a}ren Herzfeld in gleicher Weise von FGF reguliert wird wie die des kardialen Transkriptionsfaktors NKX2.5. Die Ergebnisse dieser Arbeit verdeutlichen, dass FGF w{\"a}hrend der fr{\"u}hen Entwicklung des Herzens und der Entstehung des Proepikards diverse Funktionen besitzt.}, subject = {Huhn}, language = {de} } @phdthesis{Jones2018, author = {Jones, Gabriel}, title = {Bioinspired FGF-2 delivery for pharmaceutical application}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153179}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In resent years the rate of biologics (proteins, cytokines and growth-factors) as newly registered drugs has steadily risen. The greatest challenge for pharmaceutical biologics poses its arrival at the desired target location due to e.g. proteolytic and pH dependent degradation, plasma protein binding, insolubility etc. Therefore, advanced drug delivery systems, where biologics are site directed immobilized to carriers mimicking endogenous storage sites such as the extra cellular matrix can enormously assist the application and consequently the release of exogenous administered pharmaceutical biologics. We have resorted to the fibroblast growth factor 2/ heparansulfate/ fibroblast growth factor bindingprotein 1 system as a model. Phase I deals with the selection and subcloning of a wild type murine FGF-2 construct into the bacterial pHis-Trx vector system for high yields of expression and fast, feasible purification measurements. This first step enables the provision of mFGF-2, which plays a pivotal part as a growth factor in the wound healing process as well as the vascularization of tumors, for future investigations. Therefore, the correct expression of mFGF-2 was monitored via MALDI-MS and SDS-PAGE, whereas the proper folding of the tertiary beta-trefoil structure was assessed by fluorescence spectroscopy. The MTT assay allowed us to ensure that the bioactivity was comparable to sourced FGF-2. In the last step, the purity; a requirement for future binding- and protein-protein interaction assays was monitored chromatographically (RP-HPLC). In addition, a formulation for freeze-drying was developed to ensure protein stability and integrity over a period of 60 days. Altogether, the bacterial expression and purification proved to be suitable, leading to bioactive and stable production of mFGF-2. In Phase II the expression, purification and characterization of FGFBP1, as the other key partner in the FGF-2/ HS/ FGFBP1 system is detailed. As FGFBP1 exhibits a complex tertiary structure, comprised of five highly conserved disulfide bonds and presumably multiple glycosylation sites, a eukaryotic expression was used. Human embryonic kidney cells (HEK 293F) as suspension cells were transiently transfected with DNA-PEI complexes, leading to expression of Fc-tagged murine FGFBP1. Different PEI to DNA ratios and expression durations were investigated for optimal expression yields, which were confirmed by western blot analysis and SDS-PAGE. LC-MS/MS analysis of trypsin and elastase digested FGFBP1 gave first insights of the three O-glycosylation sites. Furthermore, the binding protein was modified by inserting a His6-tag between the Fc-tag (for purification) and the binding protein itself to enable later complexation with radioactive 99mTc as radio ligand to track bio distribution of administered FGFBP1 in mice. Overall, expression, purification and characterization of mFGFBP1 variants were successful with a minor draw back of instability of the tag free binding protein. Combining the insights and results of expressed FGF-2 as well as FGFBP1 directed us to the investigation of the interaction of each partner in the FGF-2/ HS/ FGFBP1 system as Phase III. Thermodynamic behavior of FGF-2 and low molecular weight heparin (enoxaparin), as a surrogate for HS, under physiological conditions (pH 7.4) and pathophysiological conditions, similar to hypoxic, tumorous conditions (acidic pH) were monitored by means of isothermal titration calorimetry. Buffer types, as well as the pH influences binding parameters such as stoichiometry (n), enthalpy (ΔH) and to some extent the dissociation constant (KD). These findings paved the way for kinetic binding investigations, which were performed by surface plasmon resonance assays. For the first time the KD of full length FGFBP1 and FGF-2 was measured. Furthermore the binding behavior of FGF-2 to FGFBP1 in the presence of various heparin concentrations suggest a kinetic driven release of bound FGF-2 by its chaperone FGFBP1. Having gathered multiple data on the FGF-2 /HS /FGFBP1 system mainly in solution, our next step in Phase IV was the development of a test system for immobilized proteins. With the necessity to better understand and monitor the cellular effects of immobilized growth factors, we decorated glass slides in a site-specific manner with an RGD-peptide for adhesion of cells and via the copper(I)-catalyzed-azide-alkyne cycloaddition (CuAAC) a fluorescent dye (a precursor for modified proteins for click chemistry). Human osteosarcoma cells were able to grow an the slides and the fluorescence dye was immobilized in a biocompatible way allowing future thorough bioactivity assay such as MTT-assays and phospho-ERK-assays of immobilized growth factors.}, subject = {Fibroblastenwachstumsfaktor}, language = {en} } @phdthesis{Laymann2008, author = {Laymann, Bettina}, title = {Bindung der extrazellul{\"a}ren Dom{\"a}ne von N-Cadherin an den Fibroblastenwachstumsfaktor-Rezeptor FGFR-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26974}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {N-Cadherin, ein Mitglied der klassischen Cadherin Familie vermittelt durch homophile Bindungen der extrazellul{\"a}ren Dom{\"a}nen (EZD) zwischen benachbarten Zellen Zell-Zell-Kontakte. Im Nervensystem kontrolliert es zahlreiche Aufgaben wie beispielsweise die Ausbildung von Synapsen, die synaptische Plastizit{\"a}t, das Auswachsen von Axonen und deren richtungsgezielte Orientierung. In Untersuchungen zum Axonwachstum von cerebell{\"a}ren K{\"o}rnerzellen konnte von Doherty et al. (1995, 1996) gezeigt werden, dass die isolierte EZDI-V von N-Cadherin {\"u}ber den FGFR-1 (Fibroblastenwachstumsfaktor-Rezeptor-1) ein richtungsvermitteltes Auswachsen von Axonen verursacht. Basierend auf diesen Beobachtungen wurde ein Bindungsmodell erstellt (Doherty et al., 1996). Dieses geht davon aus, dass zwischen transdimeren N-Cadherin-Molek{\"u}len, {\"u}ber die Aminos{\"a}uren IDPVNGQ der EZD Wechselwirkungen mit den Aminos{\"a}uren HAV der EZD von FGFR-1 auftreten (siehe hierzu Abb. 17). Der dadurch dimerisierte FGFR-1 bewirkt innerhalb der Nervenzelle eine intrazellul{\"a}re Signaltransduktion, die in einem zielgerichteten Axonwachstum resultiert. Das Ziel der vorliegenden Arbeit war, dieses Bindungsmodell n{\"a}her zu untersuchen. Ausgehend von den f{\"u}r N-Cadherin und FGFR-1 kodierenden cDNAs und entsprechenden Vektorsystemen wurden in CHO-Zellen stabile Zelllinien erstellt. Das zugrundeliegende Expressionssystem f{\"u}hrte zu einem Ausschleusen der f{\"u}r die Experimente notwendigen Fc-Fusionsproteine in den Kultur{\"u}berstand. Eine daran anschließende auf Protein A basierende Affinit{\"a}tschromatographie des Kultur{\"u}berstandes erm{\"o}glichte die Isolierung und Anreicherung der Fc-Fusionsproteine. Desweiteren wurden Expressionsvektoren verwendet, die f{\"u}r subzellul{\"a}re Lokalisationsuntersuchungen verwendet wurden. Zu Beginn der Bindungsstudien wurde Untersuchungen zum Axonwachstum cerebell{\"a}rer K{\"o}rnerzellen durchgef{\"u}hrt. Diese dienten zum einen der {\"U}berpr{\"u}fung der von Doherty und Walsh (1996) durchgef{\"u}hrten Experimente zum L{\"a}ngenwachstum cerebell{\"a}rer K{\"o}rnerzellen in Gegenwart ausgew{\"a}hlter Zelladh{\"a}sionsmolek{\"u}le (NCAM, L1 und N-Cadherin), zum anderen dienten sie der {\"U}berpr{\"u}fung der Funktionalit{\"a}t der FGFR-1-und N-Cadherin-spezifischen Peptide (HAV und IDPVNGQ). Wie zu erwarten wurde durch Zugabe von N-Cadherin EZDI-V ein Axonl{\"a}ngenwachstum festgestellt, dass durch Zugabe der HAV- und IDPVNGQ-Peptide inhibiert wurde. F{\"u}r den Auschluß der Wirkung von Fremdproteinen wurden in der vorliegenden Arbeit direkte Bindungsstudien durchgef{\"u}hrt. Hierzu wurden sowohl ELISA- als auch in Dot-Blot-Experimente durchgef{\"u}hrt. Diese ergaben eine Wechselwirkung der EZD von FGFR-1 und N-Cadherin. Eine von DsRed-FGFR-1 abh{\"a}ngige Lokalisation von GFP-N-Cadherin in CHO-Zellen deutete ebenfalls auf eine Interaktion hin. N{\"a}here Bindungsstudien zeigten, dass die Bindungsmotive IDPVNGQ und HAV f{\"u}r eine Wechselwirkung der FGFR-1- und N-Cadherin-spezifischen EZDs bedeutungslos sind. Auch an der Laserpinzette durchgef{\"u}hrte Untersuchungen ergaben, das Wechselwirkungen zwischen N-Cadherin (auf Mikroperlen immobilisiert) und PC12-Zellen in Gegenwart der inhibierenden IDPVNGQ- und HAV-Peptide nicht verhindert werden konnten. Zusammenfasssend ist es gelungen zum ersten Mal eine direkte Wechselwirkung zwischen N-Cadherin und FGFR-1 nachzuweisen. Allerdings konnte in Kompetitionsexperimenten eine Bedeutung der postulierten Bindungsmotive nicht best{\"a}tigt werden.}, subject = {Cadherine}, language = {de} }