@phdthesis{Simin2017, author = {Simin, Dmitrij}, title = {Quantum Sensing with Highly Coherent Spin Centers in Silicon Carbide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156199}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In the present work, the energetic structure and coherence properties of the silicon vacancy point defect in the technologically important material silicon carbide are extensively studied by the optically detected magnetic resonance (ODMR) technique in order to verify its high potential for various quantum applications. In the spin vacancy, unique attributes are arising from the C3v symmetry and the spin-3/2 state, which are not fully described by the standard Hamiltonian of the uniaxial model. Therefore, an advanced Hamiltonian, describing well the appearing phenomena is established and the relevant parameters are experimentally determined. Utilizing these new accomplishments, several quantum metrology techniques are proposed. First, a vector magnetometry scheme, utilizing the appearance of four ODMR lines, allows for simultaneous detection of the magnetic field strength and the tilting angle of the magnetic field from the symmetry axis of the crystal. The second magnetometry protocol utilizes the appearance of energetic level anticrossings (LAC) in the ground state (GS) energy levels. Relying only on the change in photoluminescence in the vicinity of this GSLACs, this all-optical method does not require any radio waves and hence provides a much easier operation with less error sources as for the common magnetometry schemes utilizing quantum points. A similar all-optical method is applied for temperature sensing, utilizing the thermal shift of the zero field splitting and consequently the anticrossing in the excited state (ES). Since the GSLACs show no dependence on temperature, the all-optical magnetometry and thermometry (utilizing the ESLACs) can be conducted subsequently on the same defect. In order to quantify the achievable sensitivity of quantum metrology, as well as to prove the potential of the Si-vacancy in SiC for quantum processing, the coherence properties are investigated by the pulsed ODMR technique. The spin-lattice relaxation time T1 and the spin-spin relaxation time T2 are thoroughly analyzed for their dependence on the external magnetic field and temperature. For actual sensing implementations, it is crucial to obtain the best signal-to-noise ratio without loss in coherence time. Therefore, the irradiation process, by which the defects are created in the crystal, plays a decisive role in the device performance. In the present work, samples irradiated with electrons or neutrons with different fluences and energies, producing different defect densities, are analyzed in regard to their T1 and T2 times at room temperature. Last but not least, a scheme to substantially prolong the T2 coherence time by locking the spin polarization with the dynamic decoupling Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence is applied.}, subject = {Siliciumcarbid}, language = {en} } @phdthesis{Kraus2014, author = {Kraus, Hannes}, title = {Optically Detected Magnetic Resonance on Organic and Inorganic Carbon-Based Semiconductors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106308}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In dieser Arbeit werden drei verschiedene kohlenstoffbasierte Materialsysteme behandelt: (i) Organische Halbleiter und kleine Molek{\"u}le, in Kombination mit Fullerenen f{\"u}r Anwendungen in der organischen Photovoltaik (OPV), (ii) Halbleitende Einzelwand-Kohlenstoffnanor{\"o}hren und (iii) Siliziumkarbid (SiC), dessen Defekte erst seit kurzem als Kandidaten f{\"u}r Quantenapplikationen gehandelt werden. Alle Systeme wurden mit optisch detektierter Magnetresonanzspektroskopie (ODMR) untersucht. Im OPV-Kapitel, die intrinsischen Parameter und Orientierungen von Exzitonen mit hohem Spin wurden f{\"u}r die Materialsysteme P3HT, PTB7 und DIP untersucht. Speziell der Einfluss von Ordnung diesen organischen Systemen wurde diskutiert. Der zweite Teil des Kapitels besch{\"a}ftigt sich mit Triplettgeneration mittels Elektronenr{\"u}cktransfer im leistungsf{\"a}higen Materialsystem PTB7:PC71BM. Das Kohlenstoffnanor{\"o}hren-Kapitel zeigt zuert den ersten zweifelsfreien Nachweis von Triplettexzitonen in halbleitenden (6,5) Einzelwandkohlenstoffnanor{\"o}hren (SWNT), mittels ODMR-Spektroskopie. Ein Modell f{\"u}r die Anregungskinetik, die intrinsischen Parameter des Exzitons und Abh{\"a}ngigkeit von der Orientierung der R{\"o}hren wurden diskutiert. Der letzte Teil der Arbeit gilt Spinzentren in Siliziumkarbid. Nach einer kurzen Einf{\"u}hrung in das Materialsystem wird die Spinmultiplizit{\"a}t f{\"u}r die V2 und V3 Siliziumfehlstellen, sowie eines Frenkelpaars und eines noch nicht zugeordneten Defekts (UD) in 6H SiC, weiterhin f{\"u}r die V2 Fehlstelle und das Frenkelpaar in 4H SiC, durchg{\"a}ngig zu S=3/2 festgestellt. Das spinpolarisierte Bef{\"u}llen der 3/2-Zust{\"a}nde des Grundzustands der Siliziumfehlstellen erlaubt stimulierte Mikrowellenemission. Ausserdem wurde f{\"u}r UD und Frenkelpaar in 6H SiC eine große Temperaturabh{\"a}ngigkeit der Nullfeldparameter festgestellt, w{\"a}hrend die Siliziumfehlstellen temperaturunabh{\"a}ngig sind. Anwendung des UD und Frenkelpaars als Temperatursensor, und der Vakanzen als Vektormagnetometer wurden diskutiert.}, subject = {ODMR-Spektroskopie}, language = {en} } @phdthesis{Fuchs2015, author = {Fuchs, Franziska}, title = {Optical spectroscopy on silicon vacancy defects in silicon carbide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124071}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {This work sheds light on different aspects of the silicon vacancy in SiC: (1) Defect creation via irradiation is shown both with electrons and neutrons. Optical properties have been determined: the excitation of the vacancy is most efficient at excitation wavelengths between 720nm and 800nm. The PL decay yields a characteristic excited state lifetime of (6.3±0.6)ns. (2) Defect engineering, meaning the controlled creation of vacancies in SiC with varying neutron fluence. The defect density could be engineered over eight orders of magnitude. On the one hand, in the sample with highest emitter density, the huge PL signal could even be enhanced by factor of five via annealing mechanisms. On the other hand, in the low defect density samples, single defects with photostable room temperature NIR emission were doubtlessly proven. Their lifetime of around 7ns confirmed the value of the transient measurement. (3) Also electrical excitation of the defects has been demonstrated in a SiC LED structure. (4) The investigations revealed for the first time that silicon vacancies can even exist SiC nanocrystals down to sizes of about 60 nm. The defects in the nanocrystals show stable PL emission in the NIR and even magnetic resonance in the 600nm fraction. In conclusion, this work ascertains on the one hand basic properties of the silicon vacancy in silicon carbide. On the other hand, proof-of-principle measurements test the potential for various defect-based applications of the vacancy in SiC, and confirm the feasibility of e.g. electrically driven single photon sources or nanosensing applications in the near future.}, subject = {Siliciumcarbid}, language = {en} } @phdthesis{Kimmig2013, author = {Kimmig, Stefan}, title = {Herstellung und Charakterisierung von SiC-Faser-verst{\"a}rktem Kupfer zur Anwendung in Hochleistungsw{\"a}rmesenken}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85123}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die Wandmaterialien innerhalb des Plasmagef{\"a}ßes zuk{\"u}nftiger Fusionsreaktoren sind teilweise extremen thermischen und mechanischen Belastungen ausgesetzt. Der thermisch h{\"o}chstbelastete Bereich der Wand des Torusgef{\"a}ßes ist der Divertor. Hier werden die anfallende Fusionsasche (Helium) und erodierte Wandpartikel aus dem Plasma entfernt, wodurch aufgrund erh{\"o}hter Teilchen-Wand-Interaktion W{\"a}rmefl{\"u}sse von bis zu 15 MW/m² erreicht werden. Wolfram gilt momentan als ideales Wandmaterial mit direktem Plasmakontakt (Plasma-Facing-Material, PFM) f{\"u}r diese Beanspruchungen. Unterhalb des PFM muss die W{\"a}rme m{\"o}glichst effizient in das K{\"u}hlmedium {\"u}bertragen werden. Im zuk{\"u}nftigen Experimentalreaktor ITER wird daf{\"u}r eine Kupferlegierung (CuCrZr) verwendet, welche eine hohe W{\"a}rmeleitf{\"a}higkeit besitzt und f{\"u}r Temperaturen von bis zu 350°C unter fusionsrelevanten Bedingungen einsetzbar ist. In dieser Konfiguration kann ITER mit einer K{\"u}hlmitteltemperatur von 150°C betrieben werden. Zur kommerziellen Energiegewinnung ist dies unzureichend, da die thermische Effizienz durch eine deutliche Anhebung der K{\"u}hlmitteltemperatur verbessert werden muss. Wird der konventionelle Ansatz einer Wasserk{\"u}hlung zu Grunde gelegt, ist das Ziel die K{\"u}hlmitteltemperatur auf mindestens 300°C anzuheben. In der Folge ist CuCrZr als W{\"a}rmesenkenmaterial nicht mehr einsetzbar, da verst{\"a}rkte Alterung und Festigkeitsverlust im Material auftritt. Zus{\"a}tzlich vergr{\"o}ßern sich die thermisch induzierten Spannungen in der Komponente mit h{\"o}heren Temperaturen, durch unterschiedlich große thermische Ausdehnungskoeffizienten der beteiligten Materialien. F{\"u}r h{\"o}here Temperaturen stellt faserverst{\"a}rktes Kupfer eine m{\"o}gliche Alternative dar. Die Kombination der hohen W{\"a}rmeleitf{\"a}higkeit der Kupfermatrix mit der hohen Steifigkeit und Festigkeit von Siliziumcarbidfasern soll die n{\"o}tigen thermischen und mechanischen Eigenschaften des W{\"a}rmesenkenmaterials auch f{\"u}r Temperaturen {\"u}ber 350°C gew{\"a}hrleisten. Im Rahmen dieser Arbeit wurden zwei unterschiedlich hergestellte SiC-Verst{\"a}rkungsfasertypen hinsichtlich ihrer Eignung f{\"u}r die Herstellung eines Kupfer-Matrix-Komposits (CuMMC) untersucht. Die Zielstellung f{\"u}r das CuMMC beinhaltet eine Festigkeit von 300 MPa bei 300°C sowie eine m{\"o}glichst hohe W{\"a}rmeleitf{\"a}higkeit von {\"u}ber 200 W m-1 K-1. Beide Parameter werden stark von der Faserfestigkeit und der Anbindung zwischen Faser und Matrix beeinflusst. Die W{\"a}rmeleitf{\"a}higkeit durch das CuMMC wird von der Kupfermatrix dominiert, wodurch geringere Faservolumenanteile von Vorteil sind. H{\"o}here Faserfestigkeit erfordert geringere Faseranteile zum Erreichen mechanischer Vorgaben, womit die erzielbare W{\"a}rmeleitf{\"a}higkeit des CuMMCs steigt. Die Faserfestigkeit wird durch Einzel-Faser- Zugversuche validiert. Dar{\"u}ber hinaus ist die Anbindung zwischen Faser und Matrix essentiell, um die optimale Verst{\"a}rkungswirkung durch die Fasern im CuMMC zu erzielen. Zur Faser-Matrix-Anbindung werden f{\"u}r jeden Fasertyp unterschiedliche Zwischenschichtsysteme verwendet, die anschließend durch Einzelfaser-Push-Out-Versuche validiert werden. Sind die Voraussetzungen von Faserfestigkeit und Anbindung f{\"u}r einen Fasertyp erf{\"u}llt, wird dieser f{\"u}r die Herstellung eines unidirektional verst{\"a}rkten CuMMCs verwendet, welches bez{\"u}glich seiner mechanischen und thermischen Eigenschaften charakterisiert wird. Die mechanische Charakterisierung des CuMMCs erfolgt durch Zugversuche und dehnungsgeregelte, zyklische Versuche, wobei der Fokus neben der Festigkeit auf der Plastifizierung, Verfestigung und Sch{\"a}digung innerhalb des CuMMCs liegt. Die thermische Charakterisierung erfolgt anhand der W{\"a}rmeleitf{\"a}higkeitsbestimmung sowohl parallel, als auch transversal zur Faserrichtung. Die mechanischen und thermischen Eigenschaften werden in Abh{\"a}ngigkeit von Faservolumenanteil und Temperatur untersucht. Um den Einfluss von l{\"a}ngeren Betriebsphasen unter hoher thermischer Belastung analysieren zu k{\"o}nnen, wird das CuMMC bei 550°C f{\"u}r 400 h ausgelagert und anschließend wiederum mittels Vergleich seiner mechanischen und thermischen Eigenschaften auf m{\"o}gliche Sch{\"a}digungen untersucht. Zur Begutachtung von Schliff- und Bruchfl{\"a}chen zur Schadensanalyse stehen als bildgebende Untersuchungsmethoden neben Lichtmikroskopen ebenso Rasterelektronenmikroskope (REM) zur Verf{\"u}gung.}, subject = {Kupfer}, language = {de} } @phdthesis{Brockmann2018, author = {Brockmann, Dorothea E. R.}, title = {Gef{\"u}ge-Simulationen an Nicht-Oxid-Keramiken: Korrelation zwischen Mikrostruktur und makroskopischen Eigenschaften}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157255}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die experimentelle Verbesserung der makroskopischen Eigenschaften (z. B. thermische oder mechanische Eigenschaften) von Keramiken ist aufgrund der zahlreichen erforderlichen Experimente zeitaufw{\"a}ndig und kostenintensiv. Simulationen hingegen k{\"o}nnen die Korrelation von Mikrostruktur und makroskopischen Eigenschaften nutzen, um die Eigenschaften von beliebigen Gef{\"u}gekompositionen zu berechnen. In bisherigen Simulationen wurden meist stark vereinfachte Modelle herangezogen, welche die Mikrostruktur einer Keramik nur sehr grob widerspiegeln und deshalb keine zuverl{\"a}ssigen Ergebnisse liefern. In der vorliegenden Arbeit wird die Mikrostruktur-Eigenschafts-Korrelation der drei wichtigsten Nicht-Oxid-Keramiken untersucht. Dies sind Aluminiumnitrid (AlN), Siliciumnitrid (Si3N4) und Siliciumcarbid (SiC). Diese drei Keramiktypen vertreten die h{\"a}ufigsten Mikrostrukturtypen, welche bei Nicht-Oxid-Keramiken auftreten k{\"o}nnen. Zu jedem Keramiktyp liegen zwei verschiedene Proben vor. Alle drei untersuchten Keramiktypen sind zweiphasig. Die Hauptphase von AlN und Si3N4 besteht aus keramischen K{\"o}rnern, die Nebenphase erstarrt w{\"a}hrend der Sinterung aus den zugesetzten Sinteradditiven. Die Restporosit{\"a}t von AlN und Si3N4 wird als vernachl{\"a}ssigbar angesehen und in den Simulationen nicht ber{\"u}cksichtigt. Bei den SiC-Proben handelt es sich um Keramiken mit bimodaler Korngr{\"o}{\"y}enverteilung. Durch Infiltration mit fl{\"u}ssigem Silicium wurden die Hohlr{\"a}ume zwischen den K{\"o}rnern aufgef{\"u}llt, um porenfreie SiSiC-Proben zu erhalten. Anhand von Simulationen werden zun{\"a}chst reale Mikrostrukturen in Anlehnung an vorliegende Vergleichsproben nachgebildet. Diese Modelle werden durch Abgleich mit rasterelektronenmikroskopischen 2D-Aufnahmen der Proben verifiziert. An den Modellen werden mit der Methode der Finite-Element-Simulation makroskopische Eigenschaften (W{\"a}rmeleitf{\"a}higkeit, Elastizit{\"a}tsmodul und Poisson-Zahl) der Keramiken simuliert und mit experimentellen Messungen an den vorliegenden Proben abgeglichen. Der Vergleich der Mikrostruktur von den computergenerierten Gef{\"u}gen und den vorliegenden Proben zeigt in der Mustererkennung durch das menschliche Auge und quantitativ in den Gef{\"u}geparametern eine gute {\"U}bereinstimmung. F{\"u}r die makroskopischen Eigenschaften wird auf der Basis einer ausf{\"u}hrlichen Literaturrecherche zu den Materialparametern der beteiligten Phasen eine gute {\"U}bereinstimmung zwischen den experimentell gemessenen und den simulierten Eigenschaften erreicht. Evtl. auftretende Abweichungen zwischen Experiment und Simulation k{\"o}nnen damit erkl{\"a}rt werden, dass die Proben Verunreinigungen enthalten, da aus der Literatur bekannt ist, dass Verunreinigungen eine Verschlechterung der W{\"a}rmeleitf{\"a}higkeit bewirken. Nachdem die G{\"u}ltigkeit der Modelle verifiziert ist, wird der Einfluss von charakteristischen Mikrostrukturparametern und Phaseneigenschaften auf die W{\"a}rmeleitf{\"a}higkeit, den Elastizit{\"a}tsmodul und die Poisson-Zahl der Keramiken untersucht. Hierzu werden die Mikrostrukturparameter von AlN und Si3N4 gezielt um die Parameter der vorliegenden Vergleichsproben variiert. Bei beiden Keramiktypen werden die Volumenanteile der beteiligten Phasen sowie die mittlere Sehnenl{\"a}nge der keramischen K{\"o}rner ver{\"a}ndert. Bei den AlN-Keramiken wird zus{\"a}tzlich der Dihedralwinkel variiert, welcher Auskunft {\"u}ber den Benetzungsgrad der Fl{\"u}ssigphase gibt; bei den Si3N4-Keramiken ist das Achsenverh{\"a}ltnis der langgezogenen Si3N4-K{\"o}rner von Interesse und wird deshalb ebenfalls variiert. Es zeigt sich, dass die Aufteilung der Teilvolumina zwischen den zwei Phasen den gr{\"o}ßten Einfluss auf die Eigenschaften der Keramik hat, w{\"a}hrend die {\"u}brigen Mikrostrukturparameter nur eine untergeordnete Rolle spielen. Um die Qualit{\"a}t der Simulationen zu {\"u}berpr{\"u}fen, wird die Simulationsreihe an AlN mit unterschiedlicher Aufteilung der Volumina zwischen den beiden Phasen in Relation zu etablierten Modellen aus der Literatur (Mischungsregel und Modell nach Ondracek) gesetzt. Alle Simulationsergebnisse f{\"u}r die W{\"a}rmeleitf{\"a}higkeit und den Elastizit{\"a}tsmodul liegen innerhalb der jeweils oberen und unteren Grenze beider Modelle. Es konnte also eine Verbesserung gegen{\"u}ber den etablierten Modellen erzielt werden. An allen drei Keramiktypen wird der Einfluss der Materialeigenschaften der Haupt- und Nebenphase auf die makroskopischen Eigenschaften der Keramik untersucht. Hierf{\"u}r werden die W{\"a}rmeleitf{\"a}higkeit, der Elastizit{\"a}tsmodul und die Poisson-Zahl der Phasen getrennt voneinander {\"u}ber einen gr{\"o}ßeren Bereich variiert. Es stellt sich heraus, dass es vom Keramiktyp und dem Volumenanteil der Nebenphase abh{\"a}ngt, wie stark der Einfluss einer Komponenteneigenschaft auf die Eigenschaft der Keramik ist. Mit den im Rahmen dieser Arbeit durchgef{\"u}hrten Simulationen wird der Einfluss von Mikrostrukturparametern und Phaseneigenschaften berechnet. Auf der Grundlage dieser Simulationen k{\"o}nnen die Architektur des Gef{\"u}ges simuliert und die Eigenschaften von Keramiken f{\"u}r individuelle Anwendungen berechnet werden. Dies ist die Basis f{\"u}r die Produktion von maßgeschneiderten Keramiken. Zudem k{\"o}nnen mit den validierten Mikrostrukturmodellen die Eigenschaften von unbekannten Mischphasen ermittelt werden, was experimentell oft nicht m{\"o}glich ist.}, subject = {Aluminiumnitrid}, language = {de} } @phdthesis{Bauernfeind2023, author = {Bauernfeind, Maximilian Josef Xaver}, title = {Epitaxy and Spectroscopy of Two-Dimensional Adatom Systems: the Elemental Topological Insulator Indenene on SiC}, doi = {10.25972/OPUS-31166}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311662}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Two-dimensional (2D) topological insulators are a new class of materials with properties that are promising for potential future applications in quantum computers. For example, stanene represents a possible candidate for a topological insulator made of Sn atoms arranged in a hexagonal lattice. However, it has a relatively fragile low-energy spectrum and sensitive topology. Therefore, to experimentally realize stanene in the topologically non-trivial phase, a suitable substrate that accommodates stanene without compromising these topological properties must be found. A heterostructure consisting of a SiC substrate with a buffer layer of adsorbed group-III elements constitutes a possible solution for this problem. In this work, 2D adatom systems of Al and In were grown epitaxially on SiC(0001) and then investigated structurally and spectroscopically by scanning tunneling microscopy (STM) and photoelectron spectroscopy. Al films in the high coverage regime \( (\Theta_{ML}\approx2\) ML\( ) \) exhibit unusually large, triangular- and rectangular-shaped surface unit cells. Here, the low-energy electron diffraction (LEED) pattern is brought into accordance with the surface topography derived from STM. Another Al reconstruction, the quasi-one-dimensional (1D) Al phase, exhibits a striped surface corrugation, which could be the result of the strain imprinted by the overlayer-substrate lattice mismatch. It is suggested that Al atoms in different surface areas can occupy hexagonal close-packed and face-centered cubic lattice sites, respectively, which in turn lead to close-packed transition regions forming the stripe-like corrugations. On the basis of the well-known herringbone reconstruction from Au(111), a first structural model is proposed, which fits well to the structural data from STM. Ultimately, however, thermal treatments of the sample could not generate lower coverage phases, i.e. in particular, a buffer layer structure. Strong metallic signatures are found for In high coverage films \( (\Theta_{ML}\approx3\) to \(2\) ML\() \) by scanning tunneling spectroscopy (STS) and angle-resolved photoelectron spectroscopy (ARPES), which form a \( (7\times7) \), \( (6\times4\sqrt{3}) \), and \( (4\sqrt{3}\times4\sqrt{3}) \) surface reconstruction. In all these In phases electrons follow the nearly-free electron model. Similar to the Al films, thermal treatments could not obtain the buffer layer system. Surprisingly, in the course of this investigation a triangular In lattice featuring a \( (1\times1) \) periodicity is observed to host massive Dirac-like bands at \( K/K^{\prime} \) in ARPES. Based on this strong electronic similarity with graphene at the Brillouin zone boundary, this new structure is referred to as \textit{indenene}. An extensive theoretical analysis uncovers the emergence of an electronic honeycomb network based on triangularly arranged In \textit{p} orbitals. Due to strong atomic spin-orbit coupling and a comparably small substrate-induced in-plane inversion symmetry breaking this material system is rendered topologically non-trivial. In indenene, the topology is intimately linked to a bulk observable, i.e., the energy-dependent charge accumulation sequence within the surface unit cell, which is experimentally exploited in STS to confirm the non-trivial topological character. The band gap at \( K/K^{\prime} \), a signature of massive Dirac fermions, is estimated by ARPES to approximately 125 meV. Further investigations by X-ray standing wave, STM, and LEED confirm the structural properties of indenene. Thus, this thesis presents the growth and characterization of the novel quantum spin Hall insulator material indenene.}, subject = {Dreiecksgitter}, language = {en} } @phdthesis{Hain2015, author = {Hain, Tilman Christian}, title = {Entwicklung eines experimentellen Aufbaus zur Charakterisierung nanoskaliger Systeme mittels Fluoreszenzspektroskopie und -mikroskopie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116618}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Die vorliegende Dissertation leistet einen Beitrag zur spektroskopischen Messmethodik nanoskaliger Strukturen. Im Mittelpunkt der Arbeit steht die Entwicklung und Erprobung eines spektrofluorimetrischen Aufbaus, mit dessen Hilfe ein aus Kohlenstoffnanor{\"o}hren und DNA-Oligomeren bestehendes supramolekulares Modellsystem einer optischen Untersuchung zug{\"a}nglich gemacht wird. Die Vielseitigkeit der Messeinheit aus Mikroskop und Spektrometer wird an einer weiteren Substanzklasse untermauert. So wird das Emissionsverhalten von in Siliziumcarbidkristallen induzierten Defektzentren einer r{\"a}umlich, spektral und zeitlich aufgel{\"o}sten Charakterisierung unterzogen. Die zentrale Komponente des Spektrofluorimetrieaufbaus stellt eine Superkontinuumlichtquelle dar. In Verbindung mit einem elektronisch geregelten Filtermodul zur Wellenl{\"a}ngenselektion erlaubt sie die Durchf{\"u}hrung von Photolumineszenz-Anregungsexperimenten. Im Gegensatz zu kommerziell erh{\"a}ltlichen Systemen, die {\"u}berwiegend auf eine spektroskopische Charakterisierung gel{\"o}ster oder kolloidal stabilisierter Substanzen abzielen, erlaubt der hier realisierte Aufbau auch die PL- mikroskopische Untersuchung kondensierter Proben, was durch die Epi-Bauweise auch opake Substrate einschließt. Der Einsatz von InGaAs-Sensoren weitet das Detektionsfenster auf den Nahinfrarotbereich aus, sowohl hinsichtlich des Kamera- als auch des Spektroskopiekanals. Anhand verschiedenartiger Kohlenstoffnanorohrproben, die entweder in fl{\"u}ssiger Phase dispergiert oder in festem Zustand als Film abgeschieden vorliegen, wird die Leistungsf{\"a}higkeit des PLE-Experiments unter Beweis gestellt. Neben der Zuordnung der Chiralit{\"a}ten in polydispersen SWNT-Suspensionen wird dies auch durch die Untersuchung von Energietransferprozessen und die Studie von Umgebungseinfl{\"u}ssen demonstriert. Die Charakterisierung des DNA-SWNT-Modellsystems in mikrofluidischer Umgebung macht von der fluoreszenzmikroskopischen Detektionseinheit Gebrauch. W{\"a}hrend die intrinsische Photolumineszenz der Nanor{\"o}hren sicherstellen soll, dass Letztere in ausreichender Anzahl auf den mikrostrukturierten Substraten vorhanden sind, wird die extrinsische Photolumineszenz der funktionalisierten Oligonukleotide als spektroskopisches Maß f{\"u}r die DNA-Konzentration herangezogen. Das hierbei beobachtete Agglomerationsverhalten der farbstoffmarkierten Oligomere geht mit einer lokal erh{\"o}hten Fluoreszenzintensit{\"a}t einher und erlaubt damit die quantitative Auswertung der auf PL-Einzelbildern basierenden Zeitserien. Zugleich wird damit eine Absch{\"a}tzung der DNA-Belegung auf den Nanor{\"o}hren m{\"o}glich. Im Falle der aus 16 alternierenden Guanin-Thymin-Einheiten bestehenden Basensequenz l{\"o}sen sich nach Initiieren des Desorptionsvorgangs ein Großteil der Oligomere von der Nanorohroberfl{\"a}che ab. Lediglich ein F{\"u}nftel bleibt in adsorbierter Form zur{\"u}ck, was sich jedoch f{\"u}r die Hybridstabilit{\"a}t als ausreichend erweist. Die Freisetzung weiterer Oligomere bleibt bei der Versuchstemperatur von 20 °C trotz der hohen Verd{\"u}nnung aus, da aufgrund des gr{\"o}ßeren Interadsorbatabstands und der damit verbundenen Abnahme repulsiver Wechselwirkungen die Aktivierungsbarriere f{\"u}r ihre Desorption steigt. Die Stabilit{\"a}t der DNA-SWNT-Konjugate liegt demnach in ihrer kinetischen Inertheit begr{\"u}ndet, die sie vor einer Reaggregation bewahrt. Die Studie der in Siliziumcarbid induzierten Fehlstellendefekte kann als Beleg f{\"u}r die breite Anwendbarkeit des spektrofluorimetrischen Aufbaus gelten. PL-Mikroskopaufnahmen zeigen hierbei, dass die Anzahl der Defektzentren mit der Bestrahlungsintensit{\"a}t kontrolliert werden kann - von einer kontinuierlichen Verteilung bei hohen Strahlungsintensit{\"a}ten {\"u}ber heterogene Defektansammlungen bis hin zu Einzeldefektstellen bei niedrigen Strahlungsdosen. Letztere resultieren in beugungsbegrenzten Signaturen und erlauben damit eine Charakterisierung des abbildenden Systems sowie des Anregungsfokus. Anhand der PLE-Analyse l{\"a}sst sich das Absorptionsmaximum absch{\"a}tzen. Aussagen zur zeitlichen Entwicklung des Emissionsverhaltens werden durch TCSPC-Messungen erhalten. Die abschließende Untersuchung des Photonenflusses mit Hilfe von Korrelationsexperimenten nach Hanbury Brown-Twiss zeigt bei Raumtemperatur kein Auftreten von Photonantibunching.}, subject = {Fluoreszenzspektroskopie}, language = {de} } @phdthesis{Kasper2021, author = {Kasper, Christian Andreas}, title = {Engineering of Highly Coherent Silicon Vacancy Defects in Silicon Carbide}, doi = {10.25972/OPUS-23779}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237797}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In this work the creation of silicon vacancy spin defects in silicon carbide with predictable properties is demonstrated. Neutron and electron irradiation was used to create silicon vacancy ensembles and proton beam writing to create isolated vacancies at a desired position. The coherence properties of the created silicon vacancies as a function of the emitter density were investigated and a power-law function established. Sample annealing was implemented to increase the coherence properties of existing silicon vacancies. Further, spectral hole burning was used to implement absolute dc-magnetometry.}, subject = {St{\"o}rstelle}, language = {en} }