@phdthesis{Heupel2010, author = {Heupel, Wolfgang-Moritz Felix}, title = {Role and modulation of cadherins in pathologic processes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52716}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Ca2+ dependent cell adhesion molecules (cadherins) are central for a variety of cell and tissue functions such as morphogenesis, epithelial and endothelial barrier formation, synaptic function and cellular signaling. Of paramount importance for cadherin function is their specific extracellular adhesive trans-interaction. Cadherins are embedded in a cellular environment of intracellular and extracellular regulators that modify cadherin binding in response to various physiological and pathological stimuli. Most experimental approaches used for studying cadherin interaction however lack a physiological proof of principle mostly by not investigating cadherins in their physiological environment. In the present cumulative dissertation, experimental approaches were applied to characterize and modulate vascular endothelial (VE)-cadherin and desmocadherin functions in the (patho-)physiological contexts of endothelial permeability regulation and disturbance of epidermal barrier function, which is typical to the blistering skin disease pemphigus, respectively. Whereas VE-cadherin is a key regulator of the endothelial barrier that separates the blood compartment from the interstitial space of tissues, desmosomal cadherins are crucial for maintenance of epidermal integrity and separation of the external environment from the body's internal milieu. Cadherin functions were both investigated in cell-free and cell-based conditions: by using biophysical single molecule techniques like atomic force microscopy (AFM), cadherin function could be investigated in conditions, where contributions of intracellular signaling were excluded. These experiments were, however, compared and combined with cell-based experiments in which cadherins of epidermal or endothelial cell cultures were probed by laser force microscopy (laser tweezers), fluorescence recovery after photobleaching (FRAP) and other techniques. The autoimmune blistering skin diseases pemphigus foliaceus (PF) and pemphigus vulgaris (PV) are caused by autoantibodies directed against the extracellular domains of the desmosomal cadherins desmoglein (Dsg) 1 and 3, which are important for epidermal adhesion. The mechanism of autoantibody-induced cell dissociation (acantholysis) in pemphigus, however, is still not fully understood. For the first time, it is shown by AFM force spectroscopy that pemphigus autoantibodies directly inhibit Dsg3 adhesion by steric hindrance but do not inhibit adhesion of Dsg1. However, the full pathogenicity of the autoantibodies depended on cellular signaling processes, since autoantibodies targeting Dsg1 also resulted in loss of cadherin-mediated adhesion in cell-based experiments. However, two other signaling pathways that have been reported to be involved in pemphigus pathogenesis, i.e. epidermal growth factor receptor (EGFR) and c-Src activation, were not found to be important in this context. Furthermore, peptide-based modulators of cadherin functions were generated for Dsg1/3 and VE-cadherin. By comparing Dsg1, Dsg3 and VE-cadherin sequences to published X-ray structures of cadherin trans-interactions, specific amino acid sequences of the binding pockets of these cadherins were identified. Peptide versions of these motifs were synthesized and the antagonistic functions of these "single peptides" were validated by AFM force spectroscopy as well as by cell-based assays. By linking two single peptides in tandem, stabilization of cadherin bonds because of by cross-bridge formation between trans-interacting cadherins was demonstrated. Protective effects of tandem peptides were shown by partly preventing pemphigus autoantibody-induced acantholysis, or in the case of VE-cadherin, by stabilizing endothelial barrier properties against barrier disrupting agents like the Ca2+ ionophore A23187 and an inhibitory VE-cadherin antibody. Most importantly, VE-cadherin tandem peptides abolished microvascular hyperpermeability induced by the physiologic inflammatory agent tumor necrosis factor-α in the rat mesentery in vivo. Both classes of tandem peptides therefore can be considered as a starting point for the generation of potential therapeutic agents that might prevent cell dissociation in pemphigus and breakdown of the endothelial barrier under inflammatory conditions.}, subject = {Cadherine}, language = {en} } @phdthesis{Wiegand2002, author = {Wiegand, Johannes Tobias Martin}, title = {Einfluß der extrazellul{\"a}ren Ca2+-Konzentration und des Aktinfilamentsystems auf die homophile Interaktion von VE-Cadherin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3386}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Die Barriereeigenschaften des Gef{\"a}ßendothels werden durch Verschluß- und Adh{\"a}renskontakte vermittelt. Das Ca2+-abh{\"a}ngige Zelladh{\"a}sionsmolek{\"u}l VE-Cadherin vermittelt in Adh{\"a}renskontakten die Adh{\"a}sion benachbarter Endothelzellen. Es wurde vermutet, daß die extrazellul{\"a}re Ca2+-Konzentration und das intrazellul{\"a}re Aktinfilamentsystem die Adh{\"a}sionseigenschaften von VE-Cadherin ver{\"a}ndern k{\"o}nnen. Daher wurden diese Einflußfaktoren mit Hilfe der Laserpinzetten-Technik untersucht. Hierzu wurden Latex-Mikroperlen mit rekombinanten VE-Cadherin-Fc-Molek{\"u}len beschichtet, die damit an VE-Cadherin-Molek{\"u}le von Endothelzellen binden und Zell-Zell-Kontakte simulieren konnten. Es zeigte sich, daß die ausschließlich durch VE-Cadherin vermittelte Interaktion zwischen Mikroperlen und Endothelzellen direkt von der extrazellul{\"a}ren Ca2+-Konzentration abh{\"a}ngig war und sich durch eine s-f{\"o}rmige Titrationskurve beschreiben ließ: Die Bindungsh{\"a}ufigkeit der Mikroperlen war bei Ca2+-Konzentrationen nahe 0,0 mM gering (26-27 \%), nahm ab 0,8 mM stark zu (38 \%) und erreichte bei 1,8 mM ein Maximum (65 \%). Halbmaximale Bindung (KD) wurde bei 1,1 mM Ca2+ erreicht. Die Bindung war hochkooperativ (Hill Koeffizient nH = 4,6). Um die Eigenschaften des Aktinfilamentsystems zu ver{\"a}ndern, wurden die Zellen mit Cytochalasin B, Cytochalasin D und dem Ca2+-Ionophor A 23187 inkubiert. Dabei nahm die Bindungsh{\"a}ufigkeit der Mikroperlen deutlich gegen{\"u}ber Kontrollbedingungen ab. Es wurde gefolgert, daß ein intaktes Aktinfilamentsystem unmittelbar die Interaktion zwischen VE-Cadherin-Molek{\"u}len st{\"a}rkte. Die Ergebnisse dieser Arbeit liefern damit neue Erkenntnisse {\"u}ber die Eigenschaften von VE-Cadherin: Die Adh{\"a}sion dieses Molek{\"u}ls wird im physiologischen Ca2+-Bereich reguliert und ist direkt von einem intakten Aktinfilamentsystem abh{\"a}ngig. Es ist vorstellbar, daß die durch VE-Cadherin vermittelten Barriereeigenschaften des Endothels in vivo durch {\"a}hnliche Mechanismen reguliert werden. Ein Abfall der Ca2+-Konzentration im Interzellularspalt unter den f{\"u}r die Adh{\"a}sion kritischen Wert von 1,1 mM k{\"o}nnte durch Agonist-vermittelte {\"O}ffnung von Ca2+-Kan{\"a}len erfolgen. Eingestr{\"o}mtes Ca2+ k{\"o}nnte seinerseits {\"u}ber Aktivierung von Gelsolin zur Fragmentation von Aktinfilamenten f{\"u}hren und so die Adh{\"a}sion weiter schw{\"a}chen.}, language = {de} } @phdthesis{MuellerMarschhausen2009, author = {M{\"u}ller-Marschhausen, Katharina}, title = {Einfluss von hydrostatischem Druck auf die Integrit{\"a}t des endothelialen Zellverbands}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52039}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Endothelzellen kleiden als einschichtiger Zellverband die Blutgef{\"a}ße aus und bilden so eine Barriere zwischen Blut und Interstitium. Der Austausch von Fl{\"u}ssigkeit und Makromolek{\"u}len {\"u}ber diese Barriere wird durch die transzellul{\"a}re und parazellul{\"a}re Permeabilit{\"a}t reguliert. Die parazellul{\"a}re Permeabilit{\"a}t ist von der Integrit{\"a}t der interzellul{\"a}ren endothelialen Junktionen abh{\"a}ngig. Eine Schw{\"a}chung der Adh{\"a}sion und {\"O}ffnung der Tight Junctions bedingt unweigerlich einen Anstieg der Permeabilit{\"a}t, die bei verschiedenen pathologischen Bedingungen, z.B. inflammatorischen {\"O}demen und allergischem Schock, lebensbedrohlich werden kann. Unter physiologischen Be-dingungen ist das Endothel verschiedenen mechanischen Stimuli wie Scherstress durch den Blutfluß, zyklischer Dehnung durch die Wandspannung und hydrostatischem Druck durch den Blutdruck ausgesetzt. Da die Effekte des hydrostatischen Drucks auf die Biologie der Endothelzelle weitgehend unverstanden sind, sollte in der vorliegenden Arbeit der Einfluss des physiologischen hydrostatischen Drucks auf die Integrit{\"a}t des endothelialen Zellverbands n{\"a}her untersucht werden. Sowohl in mikrovaskul{\"a}ren Endothelzellen als auch in makro-vaskul{\"a}ren Endothelzellen wurde gefunden, dass hydrostatischer Druck von 5-15 cmH2O, wie er typischerweise in Blutkapillaren in vivo herrscht, einen protektiven Einfluss auf die Endothelbarriere gegen{\"u}ber permeabilit{\"a}tssteigernden Einfl{\"u}ssen vermittelt. Es konnte gezeigt werden, dass eine extrazellul{\"a}re Depletion von Ca2+ durch EGTA zu einem Verlust von VE-Cadherin aus den endothelialen Junktionen mit L{\"u}ckenbildung zwischen den Zellen f{\"u}hrt (dargestellt durch Immunfluoreszenz) und dass dieser Effekt durch die gleichzeitige Applikation eines hydrostatischen Drucks von 15 cmH2O weitgehend verhindert werden konnte. Auch die durch Cytochalasin D induzierte Actindepolymerisation und interzellul{\"a}re L{\"u}ckenbildung sowie die Dissoziation der Zellkontakte und Zellabl{\"o}sung nach Zugabe des Ca2+/Calmodulin-Antagonisten Trifluperazin und die Thrombin-induzierte Zelldissoziation konnten durch gleichzeitige Druckexposition von 15 cmH2O inhibiert werden. Dar{\"u}berhinaus konnte mit Hilfe der Laserpinzetten-Technik gezeigt werden, dass hydrostatischer Druck die Haftung von mit VE-Cadherin beschichteten Mikroperlen an der endothelialen Zelloberfl{\"a}che sowohl in Abwesenheit von extrazellul{\"a}rem Ca2+ als auch unter Einfluss von Cytochalasin D und Trifluperazin nahezu unvermindert erm{\"o}glichte, w{\"a}hrend ohne hydrostatischen Druck die Mikroperlen unter diesen Bedingungen (Ca2+-Depletion, Cytochalasin D, Trifluperazin) nicht mehr hafteten. Im weiteren Verlauf der Arbeit wurde untersucht, welche Mechanismen an den druckvermittelten Signalwegen beteiligt sein k{\"o}nnten. Es ist bekannt, dass cAMP und auch die Mitglieder der Rho-GTPasen-Familie Endothelbarriere-stabilisierende Funktionen haben. Es konnten jedoch keine signifikanten Ver{\"a}nderungen der cAMP-Konzentrationen sowie der Rho A- und Rac 1-Aktivit{\"a}t in makrovaskul{\"a}ren Endothelzellen unter hydrostatischem Druck von 15 cmH2O innerhalb von 45 Minuten nachgewiesen werden. Da Caveolin-1 in der Literatur eine Rolle in der Mechanotransduktion von zyklischer Dehnung und Scherstress zugesprochen wird, wurden im Labor generierte Endothelzellen aus Caveolin-1-defizienten M{\"a}usen untersucht. Caveolin-1 stabilisiert plasmalemmale Invaginationen, die Caveolae, die eine Vielzahl an Molek{\"u}len mit signalgebenden und -weiterleitenden Funktionen beherbergen. In Caveolin-1-defizienten Endothelzellen war hydrostatischer Druck nicht in der Lage eine Destabilisierung des endothelialen Zellrasens durch Cytochalsin D, Trifluperazin und EGTA zu unterdr{\"u}cken. Die Ergebnisse dieser Arbeit haben gezeigt, dass ein physiologischer hydrostatischer Druck zur Erhaltung der endothelialen Integrit{\"a}t und ihrer Barrierefunktion beitr{\"a}gt und Caveolin-1-vermittelte Mechanismen bei der Mechanotransduktion des hydrostatischen Drucks eine Rolle spielen.}, subject = {Endothel}, language = {de} }