@phdthesis{Slobodskyy2005, author = {Slobodskyy, Anatoliy}, title = {Diluted magnetic semiconductor Resonant Tunneling Structures for spin manipulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-18263}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In this work we investigate magnetic resonant tunneling diode (RTD) structures for spin manipulation. All-II-VI semiconductor RTD structures based on [Zn,Be]Se are grown by molecular beam epitaxy. We observe a strong, magnetic field induced, splitting of the resonance peaks in the I-V characteristics of RTDs with [Zn,Mn]Se diluted magnetic semiconductors (DMS) quantum well. The splitting saturates at high fields and has strong temperature dependence. A phonon replica of the resonance is also observed and has similar behaviour to the peak. We develop a model based on the giant Zeeman splitting of the spin levels in the DMS quantum well in order to explain the magnetic field induced behaviour of the resonance.}, subject = {Resonanz-Tunneldiode}, language = {en} } @phdthesis{Slobodskyy2006, author = {Slobodskyy, Taras}, title = {Semimagnetic heterostructures for spintronics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-21011}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {F{\"u}r zuk{\"u}nftige Technologien ist die Erforschung von der verwendeten Teilchen n{\"o}tig. Spintronik ist ein modernes Gebiet der Physik, welches neben der Ladung auch die Spineigenschaften als zus¨atzlichen Freiheitsgrad nutzbar macht. Der "conductivity mismatch" stellt ein fundamentales Problem f{\"u}r elektrische Spininjektion aus einem ferromagnetischem Metal in einen diffusiven Halbleiter dar. Daher m{\"u}ssen andere Methoden f{\"u}r die Injektion spin-polarisierter Ladungstr{\"a}ger benutzt werden. Mit einem Tunnelkontakt ist es m{\"o}glich, eine hoch spin-polarisierte, Raumtemperatur Tunnel-Injektion zu erzielen. Wir benutzten einen neuen Ansatz und verwendeten magnetische RTDs zur Spinmanipulation. In dieser Arbeit wurden die Eigenschaften von magnetischen, resonanten Tunneldioden (RTDs) aus rheinen II-VI-Halbleitern in ihrer Verwendung f{\"u}r die Spintronik beschrieben. Wachstumsbedingungen wurden optimiert, um das Peak-to-Valley-Verh{\"a}ltnis zu vergr{\"o}ßern. Das Design der RTDs wurde optimiert, um spinbezogene Transporteffekte beobachten zu k{\"o}nen. Mit einem externen Magnetfeld war Spinmanipulation m{\"o}glich. Selbstorganisierte CdSe Quanten-Strukturen wurden hergestelt und mit optischen Techniken untersucht. Sie w{\"u}rden in (Zn,Be)Se Tunnelbarrieren eingebettet, so dass ihre Eigenschaften durch resonantes Tunneln zug{\"a}nglich wurden.}, subject = {Heterostruktur-Bauelement}, language = {en} } @phdthesis{Pappert2007, author = {Pappert, Katrin}, title = {Anisotropies in (Ga,Mn)As - Measurement, Control and Application in Novel Devices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23370}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Ferromagnetic semiconductors (FS) promise the integration of magnetic memory functionalities and semiconductor information processing into the same material system. The prototypical FS (Ga,Mn)As has become the focus of semiconductor spintronics research over the past years. The spin-orbit mediated coupling of magnetic and semiconductor properties in this material gives rise to many novel transport-related phenomena which can be harnessed for device applications. In this thesis we address challenges faced in the development of an all-semiconductor memory architecture. A starting point for information storage in FS is the knowledge of their detailed magnetic anisotropy. The first part of this thesis concentrates on the investigation of the magnetization behaviour in compressively strained (Ga,Mn)As by electrical means. The angle between current and magnetization is monitored in magnetoresistance(MR) measurements along many in-plane directions using the Anisotropic MR(AMR) or Planar Hall effect(PHE). It is shown, that a full angular set of such measurements displayed in a color coded resistance polar plot can be used to identify and quantitatively determine the symmetry components of the magnetic anisotropy of (Ga,Mn)As at 4 K. We compile such "anisotropy fingerprints" for many (Ga,Mn)As layers from Wuerzburg and other laboratories and find the presence of three symmetry terms in all layers. The biaxial anisotropy term with easy axes along the [100] and [010] crystal direction dominates the magnetic behaviour. An additional uniaxial term with an anisotropy constant of ~10\% of the biaxial one has its easy axis along either of the two <110> directions. A second contribution of uniaxial symmetry with easy axis along one of the biaxial easy axes has a strength of only ~1\% of the biaxial anisotropy and is therefore barely visible in standard SQUID measurements. An all-electrical writing scheme would be desirable for commercialization. We report on a current assisted magnetization manipulation experiment in a lateral (Ga,Mn)As nanodevice at 4 K (far below Tc). Reading out the large resistance signal from DW that are confined in nanoconstrictions, we demonstrate the current assisted magnetization switching of a small central island through a hole mediated spin transfer from the adjacent leads. One possible non-perturbative read-out scheme for FS memory devices could be the recently discovered Tunneling Anisotropic MagnetoResistance (TAMR) effect. Here we clarify the origin of the large amplification of the TAMR amplitude in a device with an epitaxial GaAs tunnel barrier at low temperatures. We prove with the help of density of states spectroscopy that a thin (Ga,Mn)As injector layer undergoes a metal insulator transition upon a change of the magnetization direction in the layer plane. The two states can be distinguished by their typical power law behaviour in the measured conductance vs voltage tunneling spectra. While all hereto demonstrated (Ga,Mn)As devices inherited their anisotropic magnetic properties from their parent FS layer, more sophisticated FS architectures will require locally defined FS elements of different magnetic anisotropy on the same wafer. We show that shape anisotropy is not applicable in FS because of their low volume magnetization. We present a method to lithographically engineer the magnetic anisotropy of (Ga,Mn)As by submicron patterning. Anisotropic strain relaxation in submicron bar structures (nanobars) and the related deformation of the crystal lattice introduce a new uniaxial anisotropy term in the energy equation. We demonstrate by both SQUID and transport investigations that this lithographically induced uniaxial anisotropy overwrites the intrinsic biaxial anisotropy at all temperatures up to Tc. The final section of the thesis combines all the above into a novel device scheme. We use anisotropy engineering to fabricate two orthogonal, magnetically uniaxial, nanobars which are electrically connected through a constriction. We find that the constriction resistance depends on the relative orientation of the nanobar magnetizations, which can be written by an in-plane magnetic field. This effect can be explained with the AMR effect in connection with the field line patterns in the respective states. The device offers a novel non-volatile information storage scheme and a corresponding non-perturbative read-out method. The read out signal is shown to increase drastically in samples with partly depleted constriction region. This could be shown to originate in a magnetization direction driven metal insulator transition of the material in the constriction region.}, subject = {Anisotropie}, language = {en} } @phdthesis{Wenisch2008, author = {Wenisch, Jan}, title = {Ferromagnetic (Ga,Mn)As Layers and Nanostructures: Control of Magnetic Anisotropy by Strain Engineering}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-34552}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {This work studies the fundamental connection between lattice strain and magnetic anisotropy in the ferromagnetic semiconductor (Ga,Mn)As. The first chapters provide a general introduction into the material system and a detailed description of the growth process by molecular beam epitaxy. A finite element simulation formalism is developed to model the strain distribution in (Ga,Mn)As nanostructures is introduced and its predictions verified by high-resolution x-ray diffraction methods. The influence of lattice strain on the magnetic anisotropy is explained by an magnetostatic model. A possible device application is described in the closing chapter.}, subject = {Magnetischer Halbleiter}, language = {en} }