@phdthesis{Luehrmann2002, author = {L{\"u}hrmann, Anja}, title = {Analyse der Reifung von Afipien- und Rhodokokken-enthaltenden Phagosomen in Makrophagen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1619}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Die Isolierung von Phagosomen erm{\"o}glicht die biochemische Analyse der Phagosomen-Zusammensetzung sowie der an der Phagosomenreifung beteiligten Molek{\"u}le. Deshalb wurde im Rahmen dieser Promotionsarbeit eine Methode entwickelt, die es erm{\"o}glicht, Bakterien-enthaltende Phagosomen zu isolieren. Diese Methode erzielt im Vergleich zu anderen in der Literatur beschriebenen Methoden eine gute Ausbeute (fast 40 Prozent) und vor allem eine h{\"o}here Reinheit an Bakterien-enthaltenden Phagosomen. So besteht keine Kontamination mit Teilen des Golgi-Apparates und nur eine sehr geringe Kontamination mit endosomalen und lysosomalen Proteinen sowie Plasmamembranbestandteilen. Allerdings wurde eine Kontamination mit Mitochondrien und ER detektiert. Letzteres muss nicht unbedingt eine Kontamination darstellen, sondern k{\"o}nnte ein wichtiger Bestandteil von Phagosomen sein. Afipia felis ist ein Gram-negatives Bakterium, das f{\"u}r einige F{\"a}lle der Katzen-Kratz Krankheit verantwortlich ist. Es kann innerhalb von Makrophagen {\"u}berleben und sich vermehren. Die genaue Kompartimentierung der Afipia felis-enthaltenden Phagosomen in Makrophagen war allerdings unbekannt und sollte deshalb in der vorliegenden Promotionsarbeit analysiert werden. Ovalbumin Texas Red, mit dem Lysosomen vor der Infektion markiert wurden, gelangt nicht in die Afipien-enthaltenden Phagosomen, und die Afipien-enthaltenden Phagosomen sind auch nicht zug{\"a}nglich f{\"u}r Ovalbumin Texas Red, mit dem das gesamte endozytische System nach der etablierten Infektion markiert wurde. Außerdem sind etablierte, isolierte Afipia felis-enthaltende Phagosomen nur in geringem Umfang positiv f{\"u}r sp{\"a}t endosomale/lysosomale Markerproteine und negativ f{\"u}r fr{\"u}h endosomale Markerproteine. Die Afipien, die ein nicht endozytisches Kompartiment etablieren, werden vom Makrophagen in ein EEA1-negatives Kompartiment aufgenommen, das auch zu sp{\"a}teren Zeitpunkten negativ f{\"u}r LAMP-1 ist. Nur die circa 30 Prozent der Afipien, die sich in einem Kompartiment befinden, das zum endozytischen System geh{\"o}rt, gelangen nach der Aufnahme durch den Makrophagen in ein EEA1-positives Kompartiment, das zu einem sp{\"a}teren Zeitpunkt positiv f{\"u}r LAMP-1 wird. T{\"o}tung der Afipien oder Opsonisierung mit Antik{\"o}rpern vor der Infektion normalisiert die Reifung der Afipia felis-enthaltenden Phagosomen in den J774E-Makrophagen. Somit konnte nachgewiesen werden, dass die Mehrzahl der Phagosomen (70 Prozent), die Afipia felis enthalten, nicht zum endozytischen System geh{\"o}ren. Diese ungew{\"o}hnliche Kompartimentierung besteht bereits bei der Aufnahme und kann nur von lebenden Afipien etabliert werden. Rhodococcus equi ist ein Gram-positives Bakterium, das unter anderem Bronchopneumonien beim Fohlen verursacht. Aber auch Menschen und andere S{\"a}ugetiere sind von Infektionen mit R. equi betroffen. Die F{\"a}higkeit der Rhodokokken, innerhalb der Makrophagen zu {\"u}berleben und sich zu vermehren, ist mit dem Vorhandensein eines 85 kbp Plasmids assoziiert. Da {\"u}ber die genaue Kompartimentierung von R. equi im Mausmakrophagen wenig bekannt war, und der Frage, ob es einen Unterschied zwischen der Kompartimentierung von R. equi(+)- und R. equi(-)-enthaltenden Phagosomen gibt, noch nicht nachgegangen wurde, war beides Thema dieser Promotionsarbeit. Dabei zeigt sich, dass R. equi(-)-enthaltende Phagosomen wesentlich st{\"a}rker mit den sp{\"a}t endosomalen/lysosomalen Markerproteinen vATPase und LAMP-1 assoziiert sind sowie eine h{\"o}here ß-Galaktosidase-Aktivit{\"a}t aufweisen als die R. equi(+)-enthaltenden Phagosomen. Da sowohl die isolierten R. equi(-)- als auch die R. equi(+)-enthaltenden Phagosomen mit dem fr{\"u}h endosomalen Markerprotein rab5 assoziiert sind, ist anzunehmen, dass Rhodokokken unabh{\"a}ngig vom Vorhandensein des 85 kbp Plasmids in der Lage sind, die Phagosomenreifung zu verz{\"o}gern. Aber R. equi(-) kann die Reifung zwar verz{\"o}gern, aber letztendlich nicht verhindern. Wahrscheinlich reifen die Phagosomen, die R. equi(-) enthalten, zu einem sp{\"a}teren Zeitpunkt zu Phagolysosomen, wohingegen R. equi(+) ein ungew{\"o}hnliches Kompartiment etabliert und dadurch die Phagosomenreifung endg{\"u}ltig zu verhindern scheint. Somit ist anzunehmen, dass mindestens ein vom 85 kbp Plasmid kodiertes Molek{\"u}l f{\"u}r die Etablierung dieses ungew{\"o}hnlichen, R. equi(+)-enthaltenden Kompartimentes, verantwortlich ist. Da eine Infektion mit Rhodococcus equi zytotoxisch f{\"u}r die infizierte Zelle sein kann, wurde die von den Rhodokokken vermittelte Zytotoxizit{\"a}t n{\"a}her analysiert. Die in dieser vorliegenden Promotionsarbeit dargestellten Ergebnisse zeigen deutlich, dass nur die Plasmid-enthaltenden Rhodokokken zur Nekrose, aber nicht zur Apoptose ihrer Wirtszellen f{\"u}hren, w{\"a}hrend R. equi(-) keinen Einfluss auf die Vitalit{\"a}t ihrer Wirtszellen haben. Dieses Ph{\"a}nomen ist allerdings abh{\"a}ngig vom Wirtszelltyp. So sind R. equi(-) als auch R. equi(+) f{\"u}r humane Monozyten nur geringf{\"u}gig zytotoxisch.}, subject = {Afipia}, language = {de} } @article{BartelPeinPopperetal.2019, author = {Bartel, Karin and Pein, Helmut and Popper, Bastian and Schmitt, Sabine and Janaki-Raman, Sudha and Schulze, Almut and Lengauer, Florian and Koeberle, Andreas and Werz, Oliver and Zischka, Hans and M{\"u}ller, Rolf and Vollmar, Angelika M. and Schwarzenberg, Karin von}, title = {Connecting lysosomes and mitochondria - a novel role for lipid metabolism in cancer cell death}, series = {Cell Communication and Signaling}, volume = {17}, journal = {Cell Communication and Signaling}, doi = {10.1186/s12964-019-0399-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221524}, year = {2019}, abstract = {Background The understanding of lysosomes has been expanded in recent research way beyond their view as cellular trash can. Lysosomes are pivotal in regulating metabolism, endocytosis and autophagy and are implicated in cancer. Recently it was discovered that the lysosomal V-ATPase, which is known to induce apoptosis, interferes with lipid metabolism in cancer, yet the interplay between these organelles is poorly understood. Methods LC-MS/MS analysis was performed to investigate lipid distribution in cells. Cell survival and signaling pathways were analyzed by means of cell biological methods (qPCR, Western Blot, flow cytometry, CellTiter-Blue). Mitochondrial structure was analyzed by confocal imaging and electron microscopy, their function was determined by flow cytometry and seahorse measurements. Results Our data reveal that interfering with lysosomal function changes composition and subcellular localization of triacylglycerids accompanied by an upregulation of PGC1α and PPARα expression, master regulators of energy and lipid metabolism. Furthermore, cardiolipin content is reduced driving mitochondria into fission, accompanied by a loss of membrane potential and reduction in oxidative capacity, which leads to a deregulation in cellular ROS and induction of mitochondria-driven apoptosis. Additionally, cells undergo a metabolic shift to glutamine dependency, correlated with the fission phenotype and sensitivity to lysosomal inhibition, most prominent in Ras mutated cells. Conclusion This study sheds mechanistic light on a largely uninvestigated triangle between lysosomes, lipid metabolism and mitochondrial function. Insight into this organelle crosstalk increases our understanding of mitochondria-driven cell death. Our findings furthermore provide a first hint on a connection of Ras pathway mutations and sensitivity towards lysosomal inhibitors.}, language = {en} } @article{GriesbeckMichailRauchetal.2019, author = {Griesbeck, Stefanie and Michail, Evripidis and Rauch, Florian and Ogasawara, Hiroaki and Wang, Chenguang and Sato, Yoshikatsu and Edkins, Robert M. and Zhang, Zuolun and Taki, Masayasu and Lambert, Christoph and Yamaguchi, Shigehiro and Marder, Todd B.}, title = {The Effect of Branching on the One- and Two-Photon Absorption, Cell Viability, and Localization of Cationic Triarylborane Chromophores with Dipolar versus Octupolar Charge Distributions for Cellular Imaging}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {57}, doi = {10.1002/chem.201902461}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212887}, pages = {13164 -- 13175}, year = {2019}, abstract = {Two different chromophores, namely a dipolar and an octupolar system, were prepared and their linear and nonlinear optical properties as well as their bioimaging capabilities were compared. Both contain triphenylamine as the donor and a triarylborane as the acceptor, the latter modified with cationic trimethylammonio groups to provide solubility in aqueous media. The octupolar system exhibits a much higher two-photon brightness, and also better cell viability and enhanced selectivity for lysosomes compared with the dipolar chromophore. Furthermore, both dyes were applied in two-photon excited fluorescence (TPEF) live-cell imaging.}, language = {en} } @article{GriesbeckMichailRauchetal.2019, author = {Griesbeck, Stefanie and Michail, Evripidis and Rauch, Florian and Ogasawara, Hiroaki and Wang, Chenguang and Sato, Yoshikatsu and Edkins, Robert M. and Zhang, Zuolun and Taki, Masayasu and Lambert, Christoph and Yamaguchi, Shigehiro and Marder, Todd B.}, title = {The Effect of Branching on One- and Two-Photon Absorption, Cell Viability and Localization of Cationic Triarylborane Chromophores with Dipolar versus Octupolar Charge Distributions for Cellular Imaging}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {57}, doi = {10.1002/chem.201902461}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204829}, pages = {13164-13175}, year = {2019}, abstract = {Two different chromophores, namely a dipolar and an octupolar system, were prepared and their linear and nonlinear optical properties as well as their bioimaging capabilities were compared. Both contain triphenylamine as the donor and a triarylborane as the acceptor, the latter modified with cationic trimethylammonio groups to provide solubility in aqueous media. The octupolar system exhibits a much higher two-photon brightness, and also better cell viability and enhanced selectivity for lysosomes compared with the dipolar chromophore. Furthermore, both dyes were applied in two-photon excited fluorescence (TPEF) live-cell imaging.}, language = {en} } @article{OelschlaegelWeissSadanSalpeteretal.2020, author = {Oelschlaegel, Diana and Weiss Sadan, Tommy and Salpeter, Seth and Krug, Sebastian and Blum, Galia and Schmitz, Werner and Schulze, Almut and Michl, Patrick}, title = {Cathepsin inhibition modulates metabolism and polarization of tumor-associated macrophages}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {9}, issn = {2072-6694}, doi = {10.3390/cancers12092579}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213040}, year = {2020}, abstract = {Stroma-infiltrating immune cells, such as tumor-associated macrophages (TAM), play an important role in regulating tumor progression and chemoresistance. These effects are mostly conveyed by secreted mediators, among them several cathepsin proteases. In addition, increasing evidence suggests that stroma-infiltrating immune cells are able to induce profound metabolic changes within the tumor microenvironment. In this study, we aimed to characterize the impact of cathepsins in maintaining the TAM phenotype in more detail. For this purpose, we investigated the molecular effects of pharmacological cathepsin inhibition on the viability and polarization of human primary macrophages as well as its metabolic consequences. Pharmacological inhibition of cathepsins B, L, and S using a novel inhibitor, GB111-NH\(_2\), led to changes in cellular recycling processes characterized by an increased expression of autophagy- and lysosome-associated marker genes and reduced adenosine triphosphate (ATP) content. Decreased cathepsin activity in primary macrophages further led to distinct changes in fatty acid metabolites associated with increased expression of key modulators of fatty acid metabolism, such as fatty acid synthase (FASN) and acid ceramidase (ASAH1). The altered fatty acid profile was associated with an increased synthesis of the pro-inflammatory prostaglandin PGE\(_2\), which correlated with the upregulation of numerous NF\(_k\)B-dependent pro-inflammatory mediators, including interleukin-1 (IL-1), interleukin-6 (IL-6), C-C motif chemokine ligand 2 (CCL2), and tumor necrosis factor-alpha (TNFα). Our data indicate a novel link between cathepsin activity and metabolic reprogramming in macrophages, demonstrated by a profound impact on autophagy and fatty acid metabolism, which facilitates a pro-inflammatory micromilieu generally associated with enhanced tumor elimination. These results provide a strong rationale for therapeutic cathepsin inhibition to overcome the tumor-promoting effects of the immune-evasive tumor micromilieu.}, language = {en} } @phdthesis{Lisowski2022, author = {Lisowski, Clivia}, title = {Maturation of the \(Salmonella\) containing vacuole is compromised in G1 arrested host cells}, doi = {10.25972/OPUS-18523}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-185239}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The interaction of bacterial pathogens and the human host is a complex process that has shaped both organisms on a molecular, cellular and population level. When pathogenic bacteria infect the human body, a battle ensues between the host immune system and the pathogen. In order to escape an immune response and to colonize the host, pathogenic bacteria have developed diverse virulence strategies and some pathogens even replicate within host cells. For survival and propagation within the dynamic environment of a host cell, these bacteria interfere with the regulation of host pathways, such as the cell cycle, for their own benefit. The intracellular pathogen Salmonella Typhimurium invades eukaryotic cells and resides and replicates in a modified vacuolar compartment in which it is protected from the innate immune response. To this end, it employs a set of virulence factors that help to invade cells (SPI-1 effectors) and to hijack and modify the host endolysosomal system, in order to stabilize and mature its vacuolar niche (SPI-2 effectors). Previous studies have shown that Salmonella arrests host cells in G2/M phase and that Salmonella infected cells progress faster from G1 into S phase, suggesting that the G1 phase is disadvantageous for Salmonella infection. In fact, it has already been observed that Salmonella replication is impaired in G1 arrested cells. However, the reason for this impairment remained unclear. The current study addressed this question for the first time and revealed that the highly adapted, intracellular lifestyle of Salmonella is drastically altered upon G1 arrest of the host cell. It is shown that proteasomal degradation in G1 arrested cells is delayed and endolysosomal and autophagosomal trafficking is compromised. Accordingly, processing of lysosomal proteins is insufficient and lysosomal activity is decreased; resulting in uneven distribution and accumulation of endolysosomes and autophagosomes, containing undegraded cargo. The deregulation of these cellular signaling pathways affects maturation of the Salmonella containing vacuole (SCV). For the first time it is shown that acidification of SCVs is impaired upon G1 arrest. Thus, an important environmental factor for the switch from SPI-1 to SPI-2 gene expression is missing and the SPI-2 system is not activated. Consequently, targeting and modification of host cell structures by SPI-2 effectors e.g. recruitment of endolysosomal membrane proteins, like LAMP1, or exchange of endosomal cargo, is compromised. In addition, degradation of Salmonella SPI-1 effectors by the host proteasome is delayed. Their prolonged presence sustained the recruitment of early endosomes and contributed to the SCV remaining in an early, vulnerable maturation stage. Finally, it was shown that SCV membrane integrity is compromised; the early SCV ruptures and bacteria are released into the cytoplasm. Depending on the host cell type, SPI-2 independent, cytoplasmic replication is promoted. This might favor bacterial spreading, dissemination into the tissue and provide an advantage in host colonization. Overall, the present study establishes a link between host cell cycle regulation and the outcome of Salmonella infection. It fills the gap of knowledge as to why the host cell cycle stage is of critical importance for Salmonella infection and sheds light on a key aspect of host-pathogen interaction.}, subject = {Salmonella Typhimurium}, language = {en} }