@phdthesis{Kraft2017, author = {Kraft, Andreas}, title = {Kristalline Polymernetzwerke aus dodekatopischen [60]Fullerenderivaten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147262}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Im Rahmen der vorliegenden Arbeit wurde eine Serie von dodekatopischen [60]Fullerenhexakisaddukten, die mit zw{\"o}lf Carbons{\"a}uregruppen dekoriert sind, auf ihre Eigenschaften hin untersucht, ausgedehnte, kristalline Polymernetzwerke mit einer eventuellen Porosit{\"a}t darzustellen. Hierbei wurden die F{\"a}higkeiten der synthetisierten Dodekas{\"a}uren ausgenutzt {\"u}ber Wasserstoffbr{\"u}ckenbindungen und Metallkoordinationen supramolekulare Kontakte auszubilden und ausgedehnte Netzwerke zu kn{\"u}pfen. In Kapitel 2 werden zun{\"a}chst die grundlegenden physikalischen und chemischen Eigenschaften des sph{\"a}rischen [60]Fullerenmolek{\"u}ls, als Ausgangsverbindung f{\"u}r die Darstellung der supramolekularen Bausteine, vorgestellt. Insbesondere wird die chemische Funktionalisierbarkeit von C60 in verschiedenen Reaktionstypen unter Einbeziehung der selektiven, multiplen Funktionalisierbarkeit und der F{\"a}higkeit Th-symmetrische Hexakisaddukte auszubilden, beschrieben. Danach folgt in dem Unterkapitel 2.5 ein kurzer Literatur{\"u}berblick {\"u}ber das intermolekulare Vernetzen von C60 und dessen Derivaten zu gr{\"o}ßeren Molek{\"u}lverb{\"a}nden und polymeren Strukturen mit besonderem Augenmerk auf metallorganische Hybridarchitekturen, die aus funktionalisierten Fullerenen und Metallionen oder Metallclustern aufgebaut sind. Die Synthese der vier dodekatopischen, Th-symmetrischen [60]Fullerenhexakis-addukte C2-H, C3-H, C4-H und C5-H mit unterschiedlich langen Alkylketten in den Seitenarmen wird in Kapitel 4.1 beschrieben. Der Strukturtyp ist in Abbildung 114 gezeigt. Auszugsweise wird hier auch die Identifizierung der Molek{\"u}le und Kontrolle ihrer Reinheit mittels spektroskopischer Methoden vorgestellt. In Kapitel 4.2 wird die Darstellung von Wasserstoffbr{\"u}ckenbindungsnetzwerken aus den synthetisierten Dodekas{\"a}uren beschrieben und deren erhaltenen Einkristallstrukturdaten diskutiert. Das Unterkapitel 4.2.2 besch{\"a}ftigt sich zus{\"a}tzlich mit der Kristallstruktur eines VAN-DER-WAALS-Netzwerkes des Dodekas{\"a}uremethylester C2- Me, welcher in situ bei Kristallisationsversuchen von C2-H erhalten wurde. Ein Vergleich der supramolekularen Netzwerke untereinander zeigt, dass das Packungsverhalten der Fullerenderivate, trotz Interaktion der Carbons{\"a}uren mit benachbarten Fullerenbausteinen und L{\"o}sungsmittelmolek{\"u}len, maßgeblich von den großen, sph{\"a}rischen Fullerengrundk{\"o}rpern bestimmt wird. Die erhaltenen Netzwerke weisen dabei alle kubisch-dichteste ABC-Packungsmuster auf, wie es auch bei reinem C60 [244] im Festk{\"o}rper oder bei den Fulleriden[214] beobachtet wird. Die unterschiedlich langen Seitenarme bestimmen dabei lediglich die Dimensionen der Packungen, eine m{\"o}gliche Verzerrung, sowie die Auspr{\"a}gungen der entstehenden Tetraeder- und Oktaederl{\"u}cken. Im Fall von C4-H richten die Wasserstoffbr{\"u}ckenbindungen der Carbons{\"a}uregruppen die Seitenarme aus und bilden somit ein geordnetes, por{\"o}ses Netzwerk aus. In den supramolekularen Netzwerken wird {\"u}berwiegend die Raumgruppe R 3 ̅ beobachtet, außer f{\"u}r C3-H, bei der die kritische L{\"a}nge der Seitenketten, mit der Raumgruppe P1 ̅ , eine geringere Symmetrie erzwingt. Alle dargestellten supramolekularen Netzwerke sind in Abbildung 115 zusammengefasst. Obwohl die Anzahl der S{\"a}uregruppen in den Bausteinen jeweils gleich ist, wird in jedem Wasserstoffbr{\"u}ckennetzwerk ein eigener Typus an verkn{\"u}pfenden H-Br{\"u}ckenbindungsclustern beobachtet. Bei C2-H erfolgt die Kn{\"u}pfungsbindung durch die Bereitstellung und Auff{\"u}llung von hydrophilen und hydrophoben Taschen, wobei die Distanz zwischen den S{\"a}uregruppen durch die Interkalation von L{\"o}sungsmittelmolek{\"u}len {\"u}berbr{\"u}ckt wird. In C3-H f{\"u}hrt die dreidimensionale Vernetzung {\"u}ber „S"-f{\"o}rmige S{\"a}uredimere. Und bei C4-H handelt es sich um zwei interpenetrierende Teilgitter, bei der zwei helikale H-Br{\"u}ckennetzwerke ineinander verschachtelt sind. Gem{\"a}ß der „goldenen Regel" des Kristalldesigns[212] (siehe Kapitel 4.2) maximieren die Netzwerke die Anzahl der klassischen S{\"a}uredimere mit dem steigenden Grad der geometrischen Flexibilit{\"a}t der Seitenarme. Bei C2-H sind die Arme noch zu kurz, so dass die Verkn{\"u}pfung {\"u}ber H-Br{\"u}ckencluster verl{\"a}uft. C3-H bildet mit acht Armen S{\"a}uredimere aus und C4-H verwendet alle Seitenarme f{\"u}r die Ausbildung von S{\"a}uredimeren. Der Vergleich des raumausf{\"u}llenden VAN-DER-WAALS-Netzwerkes von C2-Me mit dem H-Br{\"u}ckennetzwerk von C2-H legt zudem nahe, dass die Auspr{\"a}gung von Hohlr{\"a}umen ein Effekt der gerichteten Wasserstoffbr{\"u}ckenbindungen sein muss. Aktivierungsversuche der Porenstruktur des H-Br{\"u}ckennetzwerks von C4-H und die Bestimmung der inneren Oberfl{\"a}che durch Gasadsorption runden das Kapitel ab. Die innere Oberfl{\"a}che konnte auf 40 m2g-1 f{\"u}r die BET-Adsorptionsisotherme mit Stickstoff bestimmt werden. Durch den Vergleich der Pulverdiffraktogramme vor und nach der Aktivierung konnte eine Phasenumwandlung festgestellt werden, die ein Kollabieren der Poren nahelegt. Die Implementierung von Metallen und Metallclustern in die Netzwerkstrukturen der Dodekas{\"a}uren wird im Kapitel 4.3 beschrieben. Hier konnte durch den Einbau von Zinkoxid-cluster in die Netzwerke von C2-H und C3-H die Hypothese eines „inversen MOFs" aufgestellt werden. Da sich die Zinkoxid-Cluster formal in die vorhandenen H-Br{\"u}ckencluster der Fullerennetzwerke implementieren ließen, ohne dass sich das Packungsverhalten der Fullerengrundk{\"o}rper wesentlich ver{\"a}nderte, kann geschlussfolgert werden, dass die strukturdirigierende Wirkung nicht wie in der klassischen MOF-Chemie {\"u}blich vom Metall, sondern vom organischen Bestandteil ausgeht. Das heißt Metall und Ligand tauschen hier ihre Funktionalit{\"a}t in Bezug auf ihre strukturdirigierende Wirkung. Die Zink-Fullerennetzwerke sind in Abbildung 116 dargestellt. Das Prinzip des „inversen MOFs" ist jedoch nicht auf die Metallfullerennetzwerke CdC2 und CdC4 {\"u}bertragbar. Die Struktur wird hier durch hohe Bereitschaft von Cadmium mit den Carbons{\"a}uregruppen Komplexe zu bilden dominiert. Cadmium bildet „zick-zack"-f{\"o}rmige, lineare Metallstr{\"a}nge aus, an denen die Seitenarme der Fullerenbausteine {\"u}ber Koordination mit den Carbons{\"a}uregruppen aufgespannt werden. In Abbildung 117 sind die beiden erhaltenen, por{\"o}sen Cadmium-Netzwerke dargestellt. Im Netzwerk von CuC2, das in Abbildung 118 gezeigt ist, kann die strukturdirigierende Wirkung weder dem Metall, noch der Dodekas{\"a}ure zugesprochen werden. Es kommt zur Ausbildung von zweidimensionalen metallorganischen Polymeren, indem je vier Fullerenbausteine {\"u}ber ein Kupferdimer koordiniert werden. Die Koordination von zwei weiteren Kupferionen, die jeweils endst{\"a}ndig das Dimer zu einem Tetramer erweitern, f{\"u}hren zu einer vollst{\"a}ndigen Inklusion der Metallionen in das Carbons{\"a}urenetzwerk. Die freien Koordinationsstellen an den Kupferionen sind mit Wassermolek{\"u}len abges{\"a}ttigt. Daraus resultiert die Ausbildung von Wasserstoffbr{\"u}ckenbindungen zwischen Wasser und den Carboxylgruppen der Seitenarme und somit die Ausbildung eines dreidimensionalen Netzwerkes mit einer sehr effektiven Raumausf{\"u}llung. Abbildung 118: Das Metallfullerennetzwerk von Kupfer und C2-H zeigt eine enge Verschachtelung der Bausteine und bildet keine Hohlr{\"a}ume aus. Das Metallfullerennetzwerk CaC2, das am Ende von Kapitel 4.3 behandelt wird, stellt einen Grenzfall zwischen H-Br{\"u}cken- und Metallfullerennetzwerk dar. Die Struktur ist in Abbildung 119 gezeigt. Sie weist bez{\"u}glich der Clusterbildungen in den Oktaeder- und Tetraederl{\"u}cken viele Parallelen zu den zinkhaltigen Netzwerken ZnC2 und ZnC3 auf. Die Clusterbildung von Kalzium erfolgt jedoch nur in jeder zweiten Oktaederl{\"u}cke und die entstehenden Tetraederl{\"u}cken werden, wie in dem H-Br{\"u}ckennetzwerk von C2-H von drei Carbons{\"a}uren aus der oberen Schicht gef{\"u}llt. Die jeweils andere Oktaederl{\"u}cke bleibt hingegen frei und schließt einen Hohlraum ein. Zudem ist CaC2 ein Hybridnetzwerk, da jeweils zwei Schichten zu einer metallorganischen Doppelschicht verkn{\"u}pft sind und die Doppelschichten untereinander {\"u}ber Wasserstoffbr{\"u}ckenbindungen miteinander verbunden sind. Dabei entsteht die Koordination der S{\"a}uregruppen in hydrophilen Taschen, analog zum H-Br{\"u}ckennetzwerk von C2-H. Die erhaltenen Metallfullerennetzwerke wurden jeweils durch Pulverdiffraktometrie-untersuchungen in verschiedenen Aktivierungsversuchen untersucht. Die Netzwerke ZnC2 und CaC2 haben keine sinnvoll auswertbaren BET-Adsorptionsisothermen gezeigt. Von ZnC3 konnte eine geringe innere Oberfl{\"a}che von 25 m2g-1, bei CdC2 30 m2g-1 und bei CdC4 29 m2g-1 bestimmt werden. Gr{\"o}ßere innere Oberfl{\"a}chen mit stabileren Porosit{\"a}ten k{\"o}nnen vermutlich dann erhalten werden, wenn eine M{\"o}glichkeit gefunden wird Fullerenhexakisaddukte mit rigideren Seitenarmen zu synthetisieren. Trotz des starken, multivalenten Einflusses der zw{\"o}lf S{\"a}uregruppen und ihrer Ausbildung von Wasserstoffbr{\"u}ckenbindungs- und Metallcluster, konnte beobachtet werden, dass die strukturdirigierende Wirkung in den Netzwerken von C2-H, C3-H, C4-H, ZnC2, ZnC3 und CaC2 durch die Ausbildung eines jeweils kubisch dichtesten ABC-Packungsmusters vom nanoskaligen, sph{\"a}rischen Fullerenger{\"u}st ausgeht. Es konnten in der vorliegenden Arbeit neue, vielseitige molekulare Bausteine f{\"u}r den Aufbau von dreidimensional vernetzten, kristallinen Strukturen entwickelt werden. Mit Hilfe dieser Bausteine konnten, in ihrer Komplexizit{\"a}t und ihrem Vernetzungsgrad einzigartige, Wasserstoffbr{\"u}ckennetzwerke im Einkristall untersucht werden. Durch den Einbau der oktaedrischen Bausteine in Metallfullerennetzwerke gelang hier zum ersten Mal die Implementierung von [6:0]Hexakisaddukten bei denen die isotrope, sph{\"a}rische Funktionalisierung effizient f{\"u}r eine echte, dreidimensionale Vernetzung der Fullerengrundk{\"o}rper genutzt wurde. Die wenigen bekannten fullerenhaltigen MOFs beinhalteten bisher Hexakisaddukte lediglich als lineare Linker oder waren, wie bei {[Cd(36)2](NO3)2}∞, lediglich zweidimensional verkn{\"u}pft. Die neuen, außergew{\"o}hnlichen Strukturen der Metallfullerennetzwerke wurden beschrieben und diskutiert. Die Verwendung der Dodekas{\"a}uren als dodekatopische Linkermolek{\"u}le f{\"u}hrte zus{\"a}tzlich zu einer Ausweitung der Topizit{\"a}tspalette in der MOF-Synthese, bei der bisher in der Literatur lediglich Linkermolek{\"u}le mit einer maximal oktatopischen[200] Qualit{\"a}t zum Einsatz kamen. Zus{\"a}tzlich konnte der Begriff des „inversen MOFs" eingef{\"u}hrt werden, bei dem der strukturdirigierende Einfluss vom organischen Baustein ausgeht und dadurch organischer Linker und anorganisches Koordinationszentrum ihre Funktion in der klassischen MOF-Synthese tauschen.}, subject = {Polymeres Netzwerk}, language = {de} } @phdthesis{Bialas2017, author = {Bialas, David}, title = {Exciton Coupling in Homo- and Heterostacks of Merocyanine and Perylene Bisimide Dyes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152418}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In the present thesis it could be demonstrated that strong exciton coupling does not only occur between same type of chromophores but also between chromophores with different excited state energies. The coupling significantly influences the optical absorption properties of the heterostacks comprising merocyanine and perylene bisimide dyes, respectively, and is an indication for coherent energy transfer between the chromophores. In addition, bis(merocyanine)-C60 conjugates have been synthesized, which self-assemble in non-polar solvents resulting in well-defined supramolecular p/n-heterojunctions in solution. These model systems enabled femtosecond transient absorption studies on the photoinduced electron transfer process, which is a key step for the formation of charge carriers in organic solar cells.}, subject = {Exziton}, language = {de} } @phdthesis{Liess2017, author = {Liess, Andreas}, title = {Structure-Property Relationships of Merocyanine Dyes in the Solid State: Charge Transport and Exciton Coupling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152900}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The present thesis demonstrates the importance of the solid state packing of dipolar merocyanine dyes with regard to charge transport and exciton coupling. Due to the charge transport theory for disordered materials, it is expected that high ground state dipole moments in amorphous thin films lead to low mobility values due to a broadening of the density of states. However, due to their inherent dipolarity, merocyanine dyes usually align in antiparallel dimers in an ordered fashion. The examination of twenty different molecules with ground state dipole moments up to 15.0 D shows that by a high dipolarity and well-defined sterics, the molecules pack in a highly regular two-dimensional brickwork-type structure, which is beneficial for hole transport. Utilization of these molecules for organic thin-film transistors (OTFTs) leads to hole mobility values up to 0.21 cm²/Vs. By fabrication of single crystal field-effect transistors (SCFETs) for the derivative showing the highest mobility values in OTFTs, even hole mobilities up to 2.34 cm²/Vs are achieved. Hence, merocyanine based transistors show hole mobility values comparable to those of conventional p-type organic semiconductors and therefore high ground state dipole moments are not necessarily disadvantageous regarding high mobility applications. By examination of a different series of ten merocyanine dyes with the same chromophore backbone but different donor substituents, it is demonstrated that the size of the donor has a significant influence on the optical properties of thin films. For small and rigid donor substituents, a hypsochromic shift of the absorption compared to the monomer absorption in solution is observed due to the card stack like packing of the molecules in the solid state. By utilization of sterical demanding or flexible donor substituents, a zig-zag type packing is observed, leading to a bathochromical shift of the absorption. These packing motifs and spectral shifts with an offset of 0.93 eV of the H- and J-bands comply with the archetype examples of H- and J-aggregates from Kasha's exciton theory.}, subject = {Exziton}, language = {en} } @phdthesis{Spenst2017, author = {Spenst, Peter}, title = {Xylylene Bridged Perylene Bisimide Cyclophanes and Macrocycles}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139015}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {This work is concerned with the syntheses and photophysical properties of para-xylylene bridged macrocycles nPBI with ring sizes from two to nine PBI units, as well as the complexation of polycyclic aromatic guest compounds. With a reduced but substantial fluorescence quantum yield of 21\% (in CHCl3) the free host 2PBI(4-tBu)4 can be used as a dual fluorescence probe. Upon encapsulation of rather electron-poor guests the fluorescence quenching interactions between the chromophores are prevented, leading to a significant fluorescence enhancement to > 90\% ("turn-on"). On the other hand, the addition of electron-rich guest molecules induces an electron transfer from the guest to the electron-poor PBI chromophores and thus quenches the fluorescence entirely ("turn-off"). The photophysical properties of the host-guest complexes were studied by transient absorption spectroscopy. These measurements revealed that the charge transfer between guest and 2PBI(4-tBu)4 occurs in the "normal region" of the Marcus-parabola with the fastest charge separation rate for perylene. In contrast, the charge recombination back to the PBI ground state lies far in the "inverted region" of the Marcus-parabola. Beside complexation of planar aromatic hydrocarbons into the cavity of the cyclophanes an encapsulation of fullerene into the cyclic trimer 3PBI(4-tBu)4 was observed. 3PBI(4-tBu)4 provides a tube-like structure in which the PBI subunits represent the walls of those tubes. The cavity has the optimal size for hosting fullerenes, with C70 fitting better than C60 and a binding constant that is higher by a factor of 10. TA spectroscopy in toluene that was performed on the C60@3PBI(4-tBu)4 complex revealed two energy transfer processes. The first one comes from the excited PBI to the fullerene, which subsequently populates the triplet state. From the fullerene triplet state a second energy transfer occurs back to the PBI to generate the PBI triplet state. In all cycles that were studied by TA spectroscopy, symmetry-breaking charge separation (SB-CS) was observed in dichloromethane. This process is fastest within the PBI cyclophane 2PBI(4-tBu)4 and slows down for larger cycles, suggesting that the charge separation takes place through space and not through bonds. The charges then recombine to the PBI triplet state via a radical pair intersystem crossing (RP-ISC) mechanism, which could be used to generate singlet oxygen in yields of ~20\%. By changing the solvent to toluene an intramolecular folding of the even-numbered larger cycles was observed that quenches the fluorescence and increases the 0-1 transition band in the absorption spectra. Force field calculations of 4PBI(4-tBu)4 suggested a folding into pairs of dimers, which explains the remarkable odd-even effect with respect to the number of connected PBI chromophores and the resulting alternation in the absorption and fluorescence properties. Thus, the even-numbered macrocycles can fold in a way that all chromophores are in a paired arrangement, while the odd-numbered cycles have open conformations (3PBI(4-tBu)4, 5PBI(4-tBu)4, 7PBI(4-tBu)4) or at least additional unpaired PBI unit (9PBI(4-tBu)4). With these experiments we could for the first time give insights in the interactions between cyclic PBI hosts and aromatic guest molecules. Associated with the encapsulation of guest molecules a variety of possible applications can be envisioned, like fluorescence sensing, chiral recognition and photodynamic therapy by singlet oxygen generation. Particularly, these macrocycles provide photophysical relaxation pathways of PBIs, like charge separation and recombination and triplet state formation that are hardly feasible in monomeric PBI dyes. Furthermore, diverse compound specific features were found, like the odd-even effect in the folding process or the transition of superficial nanostructures of the tetrameric cycle influenced by the AFM tip. The comprehensive properties of these macrocycles provide the basis for further oncoming studies and can serve as an inspiration for the synthesis of new macrocyclic compounds.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Dhara2017, author = {Dhara, Ayan}, title = {Stimuli-Responsive Self-Assembly and Spatial Functionalization of Organic Cages Based on Tribenzotriquinacenes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154762}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Within this thesis, synthetic strategies for self-assembled organic cage compounds have been developed that allow for both stimuli-responsive control over assembly/disassembly processes and spatial control over functionalization. To purposefully operate the reversible assembly of organic cages, boron-nitrogen dative bonds have been exploited for the formation of a well-defined, discrete bipyramidal organic assembly in solution. Thermodynamic association equilibria for cage formation have been investigated by Isothermal Titration Calorimetry (ITC). Temperature-dependent NMR studies revealed a reversible cage opening upon heating and quantitative reassembly upon cooling. For the spatial functionalization of organic cages, two divergent molecular building units have been designed and synthesized, namely tribenzotriquinacene derivatives possessing a terminal alkyne moiety at the apical position and a meta-diboronic acid having a pyridyl group at the 2-position. Facile access to a variety of apically functionalized tribenzotriquinacenes has been illustrated by post-synthetic modifications at the terminal alkyne group by Sonogashira cross-coupling and azide-alkyne click reactions. Finally, these apically functionalized tribenzotriquinacene building blocks have been implemented into boronate ester-based organic cage compounds showing modular exohedral functionalities.}, subject = {Selbstorganisation}, language = {en} }