@article{OPUS4-22541, title = {Measurement of the cross section for isolated-photon plus jet production in \({pp}\) collisions at root s=13 TeV using the ATLAS detector}, series = {Physics Letters B}, volume = {780}, journal = {Physics Letters B}, organization = {The ATLAS Collaboration}, doi = {10.1016/j.physletb.2018.03.035}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225412}, pages = {578-602}, year = {2018}, abstract = {The dynamics of isolated-photon production in association with a jet in proton-proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb(-1). Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti-k(t) algorithm with radius parameter R = 0.4 and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system. Tree-level plus parton-shower predictions from SHERPA and PYTHIA as well as next-to-leading-order QCD predictions from JETPHOX and SHERPA are compared to the measurements. (C) 2018 The Author. Published by Elsevier B.V.}, language = {en} } @phdthesis{Duerig2011, author = {D{\"u}rig, Tobias}, title = {Fracture dynamics in silicate glasses}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73492}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Understanding the mechanisms of fragmentation within silicate melts is of great interest not only for material science, but also for volcanology, particularly regarding molten fuel coolant-interactions (MFCIs). Therefore edge-on hammer impact experiments (HIEs) have been carried out in order to analyze the fracture dynamics in well defined targets by applying a Cranz-Schardin highspeed camera technique. This thesis presents the corresponding results and provides a thorough insight into the dynamics of fragmentation, particularly focussing on the processes of energy dissipation. In HIEs two main classes of cracks can be identified, characterized by completely different fracture mechanisms: Shock wave induced "damage cracks" and "normal cracks", which are exclusively caused by shear-stresses. This dual fracture situation is taken into account by introducing a new concept, according to which the crack class-specific fracture energies are linearly correlated with the corresponding fracture areas. The respective proportionality constants - denoted "fracture surface energy densities" (FSEDs) - have been quantified for all studied targets under various constraints. By analyzing the corresponding high speed image sequences and introducing useful dynamic parameters it has been possible to specify and describe in detail the evolution of fractures and, moreover, to quantify the energy dissipation rates during the fragmentation. Additionally, comprehensive multivariate statistical analyses have been carried out which have revealed general dependencies of all relevant fracture parameters as well as characteristics of the resulting particles. As a result, an important principle of fracture dynamics has been found, referred to as the "local anisotropy effect": According to this principle, the fracture dynamics in a material is significantly affected by the location of directed stresses. High local stress gradients cause a more stable crack propagation and consequently a reduction of the energy dissipation rates. As a final step, this thesis focusses on the volcanological conclusions which can be drawn on the basis of the presented HIE results. Therefore fragments stemming from HIEs have been compared with natural and experimental volcanic ash particles of basaltic Grimsv{\"o}tn and rhyolitic Tepexitl melts. The results of these comparative particle analyses substantiate HIEs to be a very suitable method for reproducing the MFCI loading conditions in silicate melts and prove the FSED concept to be a model which is well transferable to volcanic fragmentation processes.}, subject = {Bruchmechanik}, language = {en} }